4.8 Article

Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for Urea-assisted rechargeable Zn-air batteries

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 310, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121352

关键词

Oxygen reduction reaction; Urea oxidation reaction; Single atom catalysts; Bifunctional activity; Zn-air batteries

资金

  1. General Research Fund [CityU 11308120, CityU 11307619]
  2. National Natural Science Foundation of China [51872249, 52172241]

向作者/读者索取更多资源

In this study, a bifunctional electrocatalyst composed of individually dispersed Ni single atoms on N-doped carbon nanosheets (Ni SAs-NC) was synthesized and demonstrated to exhibit outstanding performance for both oxygen reduction reaction (ORR) and urea oxidation reaction (UOR). By coupling ORR with UOR of low thermodynamic potential, a urea-assisted rechargeable Zn-air battery (ZAB) with significantly decreased charging voltage and high urea elimination rate was achieved. The high bifunctional electrocatalytic activities of Ni SAs-NC resulted in a dramatically increased energy conversion efficiency of 71.8%, improving conventional ZABs by 17.1%. This successful implementation of Ni SAs-based urea-assisted ZABs with improved energy conversion efficiency may advance practical applications of ZAB technology.
The sluggish kinetics of oxygen electrode reactions is a bottleneck for the development of rechargeable Zn-air batteries (ZABs). Herein, we report a bifunctional electrocatalyst synthesized by anchoring individually dispersed Ni single atoms on N-doped carbon nanosheets (Ni SAs-NC), which exhibits an outstanding overall performance for oxygen reduction reaction (ORR) and urea oxidation reaction (UOR). Based on that, a conceptual urea-assisted rechargeable ZAB by coupling ORR with UOR of a low thermodynamic potential is demonstrated to have significantly decreased charging voltage and high urea elimination rate. The high bifunctional electrocatalytic activities of Ni SAs-NC endow the urea-assisted ZAB with a dramatically increased energy conversion efficiency of 71.8%, which is improved by 17.1% as compares with the conventional ZABs. The successful implementation of Ni SACs based urea-assisted rechargeable ZABs with an improved energy conversion efficiency may prompt ZAB technology towards practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据