4.6 Article Proceedings Paper

Development of immobilized-pepsin microreactors coupled to nano liquid chromatography and tandem mass spectrometry for the quantitative analysis of human butyrylcholinesterase

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1461, 期 -, 页码 84-91

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2016.07.058

关键词

HuBuChE; NanoLC-MS/MS; Immobilized enzyme reactor; Pepsin digestion

向作者/读者索取更多资源

Human butyrylcholinesterase is a serine hydrolase that reacts with organophosphorus compounds (OP) to form stable adducts. These adducts are valuable biomarkers for OP exposure and can be analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after a preliminary digestion step in solution. However, this digestion step is time-consuming and cannot be directly coupled with LC-MS set ups. Therefore, the aim of this work was to develop pepsin-based immobilized enzyme microreactors (IMERs) for the rapid digestion of human butyrylcholinesterase (HuBuChE). Various IMERs were synthesized by grafting different amounts of pepsin on a CNBr-sepharose gel and the grafting yield was measured by a bicinchoninic acid assay (BCA). A sensitive nanoLC-MS/MS method was developed to evaluate the digestion yields of HuBuChE on IMERs which was made possible by a synthetic peptide which was used as a calibrant. The digestion was optimized by studying the impact of different parameters such as the digestion time, the temperature and the amount of pepsin grafted on IMER. This optimization allowed HuBuChE to be digested with-in 20 min without pretreatment and with digestion yields up to 20%. The repeatability of the IMER synthesis and HuBuChE digestion was highlighted with the characterization of 3 similar IMERs. Finally, the digestion yields of HuBuChE were higher with IMERs when compared to a typical in solution digestion. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据