4.8 Article

Enhanced visible light hydrogen production via a multiple heterojunction structure with defect-engineered g-C3N4 and two-phase anatase/brookite TiO2

期刊

JOURNAL OF CATALYSIS
卷 342, 期 -, 页码 55-62

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2016.07.007

关键词

Graphitic carbon nitride; Photocatalysts; Titanium oxide; Heterojunctions; Solar hydrogen; Defect engineering

资金

  1. Nanyang Technological University
  2. Nanyang President's Graduate Scholarship
  3. MOE Singapore [RG 112/05]
  4. Singapore National Research Foundation (NRF) through the Singapore-Berkeley Initiative for Sustainable Energy (SINBERISE) CREATE Programme

向作者/读者索取更多资源

Polymeric g-C3N4 is a promising candidate for solar hydrogen production. However, its hydrogen production rate is low when used alone due to fast recombination of photogenerated electron-hole pairs. In this paper, we report much improved hydrogen production by coupling g-C3N4 with two-phase anatase/brookite TiO2 nanoparticles to form multiple heterojunctions. Results have shown that under visible light illumination, photogenerated electrons transfer from g-C3N4 to TiO. In addition, systematic comparison was carried out among different type of heterojunctions, viz., g-C3N4 coupled with a single phase of TiO2 (anatase or brookite), dual-phase TiO2 (anatase/brookite or anatase/rutile), or a three-phase TiO2 (anatase/brookite/rutile) mixture. g-C3N4 with two-phase anatase/brookite TiO2 produces the largest amount of hydrogen under visible light illumination. The comparison reveals two important factors behind photo catalytic hydrogen generation: effective charge transfer and the conduction band potential position. The band edge positions of all the constituent phases of the heterojunction have to be more cathodic than the hydrogen reduction potential in order to realize the full benefit of effective charge separation. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据