4.8 Article

Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification

期刊

ENERGY STORAGE MATERIALS
卷 45, 期 -, 页码 952-968

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2021.12.044

关键词

Lithium-ion battery; Electrochemical model; Non-destructive; Parameter identification

资金

  1. National Natural Sci-ence Foundation of China [51875054]
  2. Chongqing Natural Science Foundation for Distinguished Young Scholars [cstc2019jcyjjq0010]
  3. Graduate Research and Innovation Founda-tion of Chongqing [CYB20024]

向作者/读者索取更多资源

A novel non-destructive parameter identification method is proposed in this study to optimize the electrochemical model, and successful experimental results are demonstrated.
Physics-based electrochemical models provide insight into the battery internal states and have shown great po-tential in battery design optimization and automotive and aerospace applications. However, the complexity of the electrochemical model makes it difficult to obtain parameter values accurately. In this study, a novel non-destructive parameter identification method is proposed to parameterize the most commonly used electrochem-ical pseudo-two-dimensional model. The whole identification process consists of three key steps. First, in order to find the optimal identification conditions, the sensitivity of model parameters is analyzed, and parameters are classified into three types according to their most sensitive conditions. Second, feasible initial guess values of these unknown parameters are obtained using a deep learning algorithm, which can not only help avoid the divergence problem of the identification algorithm but also speed up the subsequent identification process. Fi-nally, two different approaches are combined and used for parameter identification, and parameters that have high sensitivity are estimated in a step-wise manner. We show that 14 electrochemical parameters can be esti-mated accurately within 1 h using simulation and experimental data. After estimating the model parameters, the root-mean-square error of the predicted voltage from the model is less than 14 mV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据