4.7 Review

Functional Roles and Ecological Importance of Small Cetaceans in Aquatic Ecosystems

期刊

FRONTIERS IN MARINE SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2022.803173

关键词

Delphinidae; Phocoenidae; trophic interactions; predator-prey interactions; non-consumptive effects; ecosystem modeling; nutrient dynamics; bioturbation

资金

  1. Coastlines and Oceans Division of Institute of Environment at Florida International University. [1409]

向作者/读者索取更多资源

Most research on small cetaceans has focused on their abundance, distribution, and behavior in relation to abiotic factors. However, their ecological impacts on communities and ecosystems remain poorly understood. Their movement patterns, high local abundances, and potential mechanisms suggest that small cetaceans can have significant effects on ecosystem structure, dynamics, and function.
Small cetaceans (dolphins, porpoises, and small toothed whales) occur from the poles to the tropics, and from freshwater habitats to the open ocean. Most ecological research has focused on the influence of abiotic factors on the abundance, distribution, and behavior of these species. The ecological impacts of small cetaceans on communities and ecosystems remain poorly quantified. Their movement patterns, often high local and regional abundances across a range of ecosystems, and high metabolic rates suggest that small cetaceans could have large effects on ecosystem structure, dynamics, and function through a variety of mechanisms. These include top-down (e.g., direct predation and risk effects) and bottom-up effects (e.g., translocation of nutrients within and across ecosystems), but also behavior-mediated processes where these predators can facilitate access to resources to other predators or modify the physical properties of habitat (e.g., bioturbation). Most small cetaceans can be consumed by other marine predators, particularly killer whales (Orcinus orca) and large sharks. Although consumption rates of small cetaceans can be high, there is a paucity of information on their effects on population sizes or behaviors of their prey. Mass-balance ecosystem models suggest that small cetaceans may impact the populations of short-lived prey species (particularly fish and cephalopods), but other factors (e.g., eutrophication and fisheries) also affect ecosystem functioning and population trends. Delphinids can also mediate the translocation and recycling of limiting nutrients between spatially distinct ecosystems on a diel basis. Despite intriguing possibilities, large gaps remain in our understanding of the roles and importance of small cetaceans in aquatic ecosystems, both marine and freshwater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据