4.8 Review

Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency

期刊

ADVANCED SCIENCE
卷 9, 期 22, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202201734

关键词

antitumor; drug delivery system; immunogenic cell death; immunotherapy; nanomedicines; synergic therapy

资金

  1. National Natural Science Foundation of China [51873120, 52073193, 51673127, 81621003]
  2. 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University [ZYJC21013]

向作者/读者索取更多资源

This article reviews the use of nanostructure-based drug delivery systems (NDDSs) to enhance the effectiveness of tumor immunotherapy. By inducing immunogenic cell death (ICD) and releasing danger-associated molecular patterns (DAMPs) and tumor-associated antigens, in combination with chemotherapy, photodynamic therapy, photothermal therapy, and radiotherapy, the tumor immunosuppressive microenvironment can be improved, resulting in increased sensitivity to immunotherapy and reduced side effects.
Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据