4.7 Article

Engineering defected 2D Pd/H-TiO2 nanosonosensitizers for hypoxia alleviation and enhanced sono-chemodynamic cancer nanotherapy

期刊

JOURNAL OF NANOBIOTECHNOLOGY
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12951-022-01398-6

关键词

Chemodynamic therapy; Nanozyme; Oxygen deficiency; Pd/H-TiO2 nanosheets; Sonodynamic therapy

资金

  1. National Natural Science Foundation of China [81873897]
  2. Shanghai Science and Technology Program [21010500100]
  3. Basic Research Program of Shanghai Municipal Government [21JC1406002]
  4. International Collaboration Project of Chinese Academy of Sciences [GJHZ2072, ECSHU-2021-029]

向作者/读者索取更多资源

The defected two-dimensional Pd/H-TiO2 nanosheets were engineered with triple antineoplastic properties, exhibiting excellent sonodynamic therapy effect, chemodynamic therapy effect, and the ability to ameliorate hypoxic condition. These nanosheets have the potential to be a powerful competitor among a variety of nanosonosensitizers.
Background: Sonodynamic therapy (SDT) is a burgeoning modality for cancer therapy owing to its high tissue-penetrating capability, controllability and safety. Whereas, the undesirable reactive oxygen species (ROS) yield of sonosensitizers and tumor hypoxia are two vulnerable spots of SDT. Therefore, it is an advisable strategy to augment ROS level and simultaneously relieve hypoxia for SDT to arrive its full potential in cancer treatment. Results: In this work, the defected two-dimensional (2D) Pd/H-TiO2 nanosheets (NSs) with triple antineoplastic properties were dexterously elaborated and engineered using a facile one-pot Pd-catalyzed hydrogenation tactic by loading a tiny amount of Pd and then inletting hydrogen flow at atmospheric pressure and temperature. The 2D black Pd/H-TiO2 NSs with oxygen defects exerted eximious SDT effect based on the decreased bandgap that made it easier for the separation of electrons and holes when triggered by ultrasound as theoretically guided by density functional theory calculations. Additionally, Pd/H-TiO2 NSs could serve as Fenton-like agents because of the presence of oxygen defects, facilitating the conversion of hydrogen peroxide into hydroxyl radicals for exerting the chemodynamic therapy (CDT). Simultaneously, the introduced tiny Pd component possessed catalase-like activity responsible for oxygen production to ameliorate hypoxic condition and thus contributed to improving SDT and CDT efficacies. Both in vitro and in vivo results provided compelling evidences of high ROS yield and aggrandized sono-chemodynamic effect of Pd/H-TiO2 nanosonosensitizers with the detailed underlying mechanism investigation by RNA sequencing. Conclusion: This work delves the profound potential of Pd-catalyzed hydrogenated TiO2 on oncotherapy, and the effective antineoplastic performance and ignorable therapeutic toxicity make it a powerful competitor among a cornucopia of nanosonosensitizers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据