4.6 Article

Thermal Burst Synthesis of High-Performance Si Nanotube Sheets for Lithium-Ion Batteries

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 10, 期 12, 页码 4031-4039

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.2c00632

关键词

Si nanotube sheets; Si-based anode; Hard template method; Thermal burst; Magnesiothermic reduction

资金

  1. National Natural Science Foundation of China [51764008, 51864012]

向作者/读者索取更多资源

One of the drawbacks of Si-based battery anodes is poor cycle stability due to volume expansion. To overcome this limitation, a novel strategy of Si nanotube sheet synthesis using the thermal burst method is proposed. SiO2 nanotubes are prepared using the hard template method, and Si nanotube sheets are produced during the thermal burst caused by magnesiothermic reduction. The Si nanotube sheets exhibit excellent electrochemical properties.
One of the drawbacks of Si-based battery anodes is poor cycle stability due to volume expansion of the anode material. To overcome this limitation, we propose a novel strategy of Si nanotube sheet synthesis using the thermal burst method. Herein, SiO2 nanotubes are prepared using the hard template method; subsequently, Si nanotube sheets are produced during the thermal burst caused by magnesiothermic reduction, which occurs because nanotubes are broken by ZnO with a larger thermal expansion coefficient. The electrochemical test results indicate that the Si nanotube sheets possess excellent electrochemical properties. The discharge specific capacity can reach 712.7 mAh g(-1) even at the current density of 5 A g(-1). Moreover, after carbon coating, a discharge capacity of 695.9 mAh g(-1) is retained after 400 cycles at 1 A g(-1) and the capacity retention of full batteries can reach 81.78% after 50 cycles at a rate of 0.5 C. Thus, the Si-based anode electrode with excellent electrochemical performance can be prepared by the thermal burst process, and this strategy can be applied to the preparation of other anode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据