4.7 Article

Dynamics of radiative Williamson hybrid nanofluid with entropy generation: significance in solar aircraft

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-13086-4

关键词

-

资金

  1. Deanship of Scientific Research
  2. Islamic University of Madinah, Saudi Arabia

向作者/读者索取更多资源

This study investigates the utilization of nanotechnology and solar radiation to improve aviation efficiency. By conducting experiments and numerical simulations, the thermal conduction performance of a hybrid nanofluid on solar airplane wings is analyzed, taking into account various factors such as temperature, shear stress, velocity, and friction coefficient. The results demonstrate that the hybrid nanofluid outperforms ordinary nanofluids in terms of heat transmission analysis.
Sun based energy is the chief source of heat from the sun, and it utilizes in photovoltaic cells, sun-based power plates, photovoltaic lights and sun-based hybrid nanofluids. Specialists are currently exploring the utilization of nanotechnology and sun-based radiation to further develop flight effectiveness. In this analysis, a hybrid nanofluid is moving over an expandable sheet. Analysts are presently exploring the utilization of nanotechnology and sunlight-based radiation to further develop avionics productivity. To explore the heat transfer rate phenomenon, a hybrid nanofluid stream is moving towards a trough having a parabolic type shape and is located inside of solar airplane wings. The expression used to depict the heat transfer phenomenon was sun based thermal radiation. Heat transfer proficiency of airplane wings is evaluated with the inclusion of distinguished effects like viscous dissipation, slanted magnetic field and solar-based thermal radiations. The Williamson hybrid nanofluid past an expandable sheet was read up for entropy generation. The energy and momentum expressions were solved numerically with the utilization of the Keller box approach. The nano solid particles, which are comprised of copper (Cu) and Graphene oxide, are dispersed utilizing SA (Sodium alginate) as an ordinary liquid (GO). A huge number of control factors, for example, temperature, shear stress, velocity, frictional element along with Nusselt number are investigated in detail. Intensification of thermal conduction, viscous dissipation and radiation improve the performance of airplane wings subjected to heat transmission. Hybrid nanofluid performance is much better than the ordinary nanofluid when it comes to heat transmission analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据