4.8 Article

Effects of cryo-EM cooling on structural ensembles

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29332-2

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

Structure determination by cryo-EM provides atomic-resolution information on structural heterogeneity and ensembles. This study focuses on quantifying the effects of cooling during cryo-EM imaging by combining continuum model calculations, molecular dynamics simulations, and kinetic models. The findings suggest that thermal contraction, reduced thermal motion, and equilibration into lower free-energy conformations contribute to the narrowing of structural ensembles. This research provides a method to quantify the heterogeneity of room-temperature ensembles from cryo-EM structures.
Structure determination by cryo electron microscopy (cryo-EM) provides information on structural heterogeneity and ensembles at atomic resolution. To obtain cryo-EM images of macromolecules, the samples are first rapidly cooled down to cryogenic temperatures. To what extent the structural ensemble is perturbed during cooling is currently unknown. Here, to quantify the effects of cooling, we combined continuum model calculations of the temperature drop, molecular dynamics simulations of a ribosome complex before and during cooling with kinetic models. Our results suggest that three effects markedly contribute to the narrowing of the structural ensembles: thermal contraction, reduced thermal motion within local potential wells, and the equilibration into lower free-energy conformations by overcoming separating free-energy barriers. During cooling, barrier heights below 10 kJ/mol were found to be overcome, which is expected to reduce B-factors in ensembles imaged by cryo-EM. Our approach now enables the quantification of the heterogeneity of room-temperature ensembles from cryo-EM structures. The rapid temperature drop during plunge-freezing affects the structural ensembles obtained by cryo-EM. To quantify the extent of perturbation, Bock and Grubmuller combined continuum calculations, MD simulations, and kinetic models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据