4.8 Article

Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29812-5

关键词

-

资金

  1. ETH research grant [ETH-33 18-2]
  2. Swiss National Science Foundation [200021-178944]
  3. European Research Council (ERC) [N849229 - CQWLED]
  4. Swiss National Science Foundation (SNF) [200021_178944] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The authors demonstrated the control of transition-dipole-moment orientation in quantum dot solids using colloidal lead halide perovskite anisotropic nanocrystals, leading to an enhanced external quantum efficiency.
Controlling the transition-dipole-moment orientation in quantum dot solids at device level has not been achieved before. Here, the authors demonstrated intrinsic light out-coupling enhancement approach to boost the external quantum efficiency up to 25% by using the colloidal lead halide perovskite anisotropic nanocrystals. Quantum dot (QD) light-emitting diodes (LEDs) are emerging as one of the most promising candidates for next-generation displays. However, their intrinsic light outcoupling efficiency remains considerably lower than the organic counterpart, because it is not yet possible to control the transition-dipole-moment (TDM) orientation in QD solids at device level. Here, using the colloidal lead halide perovskite anisotropic nanocrystals (ANCs) as a model system, we report a directed self-assembly approach to form the anisotropic nanocrystal superlattices (ANSLs). Emission polarization in individual ANCs rescales the radiation from horizontal and vertical transition dipoles, effectively resulting in preferentially horizontal TDM orientation. Based on the emissive thin films comprised of ANSLs, we demonstrate an enhanced ratio of horizontal dipole up to 0.75, enhancing the theoretical light outcoupling efficiency of greater than 30%. Our optimized single-junction QD LEDs showed peak external quantum efficiency of up to 24.96%, comparable to state-of-the-art organic LEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据