4.8 Article

A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice

期刊

SCIENCE TRANSLATIONAL MEDICINE
卷 14, 期 643, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scitranslmed.abf3685

关键词

-

资金

  1. Sanofi RD
  2. Intramural Research Program of the National Institute of Allergy and Infectious Diseases

向作者/读者索取更多资源

EBV is a major cause of infectious mononucleosis, human cancers, and multiple sclerosis, with no vaccines or treatments currently available. A nanoparticle vaccine displaying viral glycoproteins was designed to induce potent neutralizing antibodies against EBV and protect against infection in vivo, showing promising results in animal models.
Epstein-Barr virus (EBV) is the major cause of infectious mononucleosis and is associated with several human cancers and, more recently, multiple sclerosis. Despite its prevalence and health impact, there are currently no vaccines or treatments. Four viral glycoproteins (gp), gp350 and gH/gL/gp42, mediate entry into the major sites of viral replication, B cells, and epithelial cells. Here, we designed a nanoparticle vaccine displaying these proteins and showed that it elicits potent neutralizing antibodies that protect against infection in vivo. We designed single-chain gH/gL and gH/gL/gp42 proteins that were each fused to bacterial ferritin to form a self-assembling nanoparticle. Structural analysis revealed that single-chain gH/gL and gH/gL/gp42 adopted a similar conformation to the wild-type proteins, and the protein spikes were observed by electron microscopy. Single-chain gH/gL or gH/gL/gp42 nanoparticle vaccines were constructed to ensure product homogeneity needed for clinical development. These vaccines elicited neutralizing antibodies in mice, ferrets, and nonhuman primates that inhibited EBV entry into both B cells and epithelial cells. When mixed with a previously reported gp350 nanoparticle vaccine, gp350D123, no immune competition was observed. To confirm its efficacy in vivo, humanized mice were challenged with EBV after passive transfer of IgG from mice vaccinated with control, gH/gL/gp42+ gp350D123, or gH/gL+gp350D123 nanoparticles. Although all control animals were infected, only one mouse in each vaccine group that received immune IgG had detectable transient viremia. Furthermore, no EBV lymphomas were detected in immune animals. This bivalent EBV nanoparticle vaccine represents a promising candidate to prevent EBV infection and EBV-related malignancies in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据