4.5 Article

Heat stress redistributes blood flow in arteries of the brain during dynamic exercise

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 120, 期 7, 页码 766-773

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00353.2015

关键词

cardiac output; external carotid artery; hyperthermic exercise; thermoregulation; vertebral artery

资金

  1. Japanese Ministry of Education, Science, Sports and Culture grant [26460324]
  2. Grants-in-Aid for Scientific Research [25282184, 26350700] Funding Source: KAKEN

向作者/读者索取更多资源

We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35 degrees C; Heat) and thermoneutral environments (25 degrees C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P < 0.05) and thereafter gradually decreased. ICA COND was significantly decreased (P < 0.05), whereas VA COND remained unchanged throughout Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P < 0.01). During Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据