4.7 Review

A comprehensive review on the recycling of discarded printed circuit boards for resource recovery

期刊

出版社

ELSEVIER
DOI: 10.1016/j.resconrec.2021.106027

关键词

E-waste; Recycling; PCB; Post-treatment; Precious metals; Electronic components; Value addition

向作者/读者索取更多资源

Printed circuit boards (PCBs) are crucial for electronic waste recycling. This review discusses various processes for extracting metals from PCBs and highlights the importance of pre-treatments and separation techniques. Selective recovery of high purity products and separate treatment of electronic waste and precious metal-rich components are emphasized.
Printed circuit boards (PCBs) are an essential and central component of electronic waste. The rapid depletion of natural resources, massive generation of end-of-life PCBs and inherently metal-loaded values inevitably call for recycling and recovery. This review critically discusses the systematic and sequential processes adopted for PCB metallic recoveries via physical, pyrometallurgical, hydrometallurgical, and combined technologies. Pre treatments play a decisive and significant role in upgradation and efficient metal extraction. A novel combination of different pre-treatments and hybrid thermal-chemical routes are often reported for improved separation efficiency and performance. Selective recovery (using solvent extraction, precipitation, polymer inclusion membrane, adsorption, ion exchange) of high purity product from multi-elemental leach solution has recently gained interest and is reviewed. Current recycling techniques at a commercial scale are preferably based on pyrometallurgy (smelting-refining), where electronic waste is only a fraction of the total feed stream. Electronic components such as monolithic ceramic capacitors, tantalum capacitors, integrated circuits, and central processing units mounted on the PCBs are important due to precious metals' presence. The futuristic recycling perspective should treat base and precious metal-rich components separately with minimal environmental effect, end product usage, and maximum economic benefit. Sustainable processing routes for converting discarded PCBs into value-added products should also be attempted, as amplified in this review. An integrated, definite framework for full resource recovery from waste PCBs was proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据