4.6 Article

Bonding and charge transfer plasmons of conductively bridged nanoparticles: The effects of junction conductance and nanoparticle morphology

期刊

JOURNAL OF APPLIED PHYSICS
卷 120, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4962133

关键词

-

资金

  1. 973 Program [2013CB922404]
  2. National Natural Science Foundation of China [11474040, 11274053, 11474039, 61575030, 14KP007]

向作者/读者索取更多资源

A detailed study of charge transfer plasmon properties of conductively bridged nanoparticles is essential for designing artificial molecules and developing plasmonic sensors. In this report, we demonstrate spectral tuning and control of local field responses of conductively bridged and compositionally homogeneous plasmonic nanoparticles of various shapes and sizes. The scattering spectral peaks of connected nanoparticles are tuned by controlling inter-particle feed-gap, junction conductance, and nanoparticle morphology. The far-field spectral responses are further tuned by increasing the number of nanoparticles from dimer to trimer, and a generalized expression for charge transfer plasmon peak shift with junction geometry is developed for various shapes of nanotrimers. The corresponding near-field distributions of the linked nanoparticles also exhibit remarkable features. Specifically, the local field profiles of dimer nanoparticles calculated at the charge transfer wavelengths show strong interaction between the nanoparticles. On the other hand, in the bridged symmetrical nanotrimers, the central nanoparticles act as a bridge and only the rest two of the nanoparticles show bright modes. These findings suggest that using conductively bridged nanoaggregates could play a significant role in tuning far-field spectral responses of plasmonic nanostructures for practical applications in molecular sensing. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据