4.5 Article

Comparison of breakup and coalescence kernels in population balance model for modeling isothermal gas-liquid flow

期刊

NUCLEAR ENGINEERING AND DESIGN
卷 388, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2021.111616

关键词

Population balance model; Breakup and coalescence kernels; Gas-liquid flow; Isothermal flow

资金

  1. Sichuan Science and Technology Project [2020YFSY0031]

向作者/读者索取更多资源

This paper investigates the application of the Eulerian-Eulerian approach and the population balance model (PBM) in describing the coalescence and breakup of bubbles in gas-liquid flows in the nuclear energy industry. The bubble size distribution, void fraction, interface area concentration, and gas/liquid flow velocity are calculated and compared to experimental data. Four different breakup and coalescence kernels are proposed and evaluated for their accuracy in calculating various parameters. The results demonstrate the importance of selecting appropriate breakup and coalescence kernels to ensure accurate calculations.
At present, combining the Eulerian-Eulerian approach and the population balance model (PBM) to describe the bubbles coalescence and breakup has attracted much attention for the gas-liquid flow of the nuclear energy industry. In this paper, the bubble size distribution, void fraction, interface area concentration, gas/liquid flow velocity with four breakup and coalescence kernels of the PBM were calculated and compared to experimental data for an isothermal bubbly flow. First, four kernels in PBM: model of Luo and Svendsen (1996) model of Lehr et al. (2002), model of Coulaloglou and Tavlarides (1977) and model of Prince and Blanch (1990) were proposed and used to calculate the isothermal gas-liquid two-phase flow inside the pipe. Second, related parameters in the inlet and exit section were analyzed and the calculation results especially in the position in the near wall were compared to the experimental data to evaluate the calculation accuracy of four models. The results indicate that the suitable breakup and coalescence kernels are crucial to ensure the calculation accuracy. In most cases, all models have high accuracy for the gas and liquid flow velocity inside the pipe (within 10%), while the calculation accuracy of interfacial area concentration is lower (within 55%). Model of Luo and Svendsen (1996) shows higher accuracy (relative error within 12%) and superiority in calculating the bubble size and reflect more accurately the bubble size distribution. This paper will be helpful to provide guidance for choosing breakup and coalescence kernels using PBM for simulating bubbly flows in nuclear installations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据