4.7 Article

Temperature Sensitivity of Microbial Litter Decomposition in Freshwaters: Role of Leaf Litter Quality and Environmental Characteristics

期刊

MICROBIAL ECOLOGY
卷 85, 期 3, 页码 839-852

出版社

SPRINGER
DOI: 10.1007/s00248-022-02041-5

关键词

Climate change; Activation energy; Resource quality; Microbial activity; Temperature; Streams

向作者/读者索取更多资源

This study examined the temperature sensitivity of plant litter decomposition in lotic ecosystems and found that factors such as leaf quality and microbial community type can influence the response. The results indicate that the acceleration of litter decomposition by global warming is shaped by local factors.
Ongoing global warming is expected to alter temperature-dependent processes. Nevertheless, how co-occurring local drivers will influence temperature sensitivity of plant litter decomposition in lotic ecosystems remains uncertain. Here, we examined the temperature sensitivity of microbial-mediated decomposition, microbial respiration, fungal biomass and leaf nutrients of two plant species varying in litter quality. We also assessed whether the type of microbial community and stream water characteristics influence such responses to temperature. We incubated alder (Alnus glutinosa) and eucalypt (Eucalyptus globulus) litter discs in three streams differing in autumn-winter water temperature (range 4.6-8.9 degrees C). Simultaneously, in laboratory microcosms, litter discs microbially conditioned in these streams were incubated at 5, 10 and 15 degrees C with water from the conditioning stream and with a water control from an additional stream. Both in the field and in the laboratory, higher temperatures enhanced litter decomposition rates, except for eucalypt in the field. Leaf quality modified the response of decomposition to temperature in the field, with eucalypt leaf litter showing a lower increase, whereas it did not in the laboratory. The origin of microbial community only affected the decomposition rates in the laboratory, but it did not modify the response to temperature. Water quality only defined the phosphorus content of the leaf litter or the fungal biomass, but it did not modify the response to temperature. Our results suggest that the acceleration in decomposition by global warming will be shaped by local factors, mainly by leaf litter quality, in headwater streams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据