4.7 Article

Dissolvable 3D printed PVA moulds for melt electrowriting tubular scaffolds with patient-specific geometry

期刊

MATERIALS & DESIGN
卷 215, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2022.110466

关键词

Melt electrowriting; Tubular scaffold; Polycaprolactone; PVA; FDM; Moulds

资金

  1. Australian Government
  2. Advance Queensland Industry Research Fellowship [AQIRF2020, AQIRF1312018]
  3. QUT IHBI ECR Scheme

向作者/读者索取更多资源

Melt electrowriting (MEW) is a popular additive manufacturing technique for tissue engineering applications, capable of fabricating micron-scale biocompatible constructs. This study demonstrated the use of water-soluble molds to support the fabrication of complex and patient-specific tubular MEW scaffolds.
Melt electrowriting (MEW) is an additive manufacturing technique capable of fabricating microfibre thermoplastic scaffolds that is growing in popularity for tissue engineering applications. MEW is able to produce micron-scale biocompatible constructs through electrodynamic jet deposition with a high level of control over fibre deposition. By depositing MEW fibres on a rotating cylindrical collector (mandrel), tubular constructs can be fabricated to mimic cylindrical anatomical tissues such as blood vessels. This proof-of-concept study leveraged the water solubility of polyvinyl alcohol (PVA) moulds to support tubular MEW scaffold fabrication in complex and patient-specific geometries. The dissolution rate of 3D printed PVA moulds was measured in water under constant stirring for 2 h. MEW scaffolds were printed on then removed from either PVA or non-dissolvable PLA moulds, and the preservation of the MEW scaffold morphology was assessed. The non-dissolvable PLA moulds significantly damaged the MEW scaffolds while the PVA dissolvable moulds enabled the preservation the of scaffold geometry and could be separated from the mould with ease. This study demonstrated the capability for MEW to be leveraged as a technique for producing anatomically relevant tubular structures. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据