4.7 Article

Ultrafine grained metastable Ti6Al4V5Cu alloy with high strength and excellent low-cycle fatigue property

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 129, 期 -, 页码 240-250

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2022.05.007

关键词

Transformation induced plasticity; Ti alloys; Low-cycle fatigue; Work hardening; Crack propagation

资金

  1. National Key Research and Development Program of China [2018YFC1106600]
  2. Natural Science Foundation of China [51631009]
  3. Liaoning Revitalization Talents Program [XLYC1807069]
  4. Doctoral Scientific Research Foundation of Liaoning Province [2020BS002]
  5. Binzhou Weiqiao Guoke Institute of Advanced Technology

向作者/读者索取更多资源

A Ti6Al4V5Cu alloy with a transformation induced plasticity (TRIP) effect was developed in this study, which exhibited improved tensile strength and fatigue properties compared to the traditional Ti6Al4V alloy. The alloy's strength was enhanced through grain refinement and phase transformation optimization. The results showed that the tensile strength and elongation of the TRIP Ti6Al4V5Cu alloy were increased by 23.7% and 46.7%, respectively, compared to the traditional Ti6Al4V alloy. Additionally, the fatigue life of the Ti6Al4V5Cu alloy was 2-5 times longer than that of the Ti6Al4V alloy under the same strain amplitude. The mechanisms behind the improved properties were also elucidated, providing a research foundation for the development of high-performance titanium alloys.
The insufficient low-cycle fatigue properties of titanium alloys under cyclic heavy loading are regarded as a challenge for their security in service. In recent years, a large number of studies have found that the transformation induced plasticity (TRIP) effect could hinder the propagation of fatigue cracks, which significantly improved the low-cycle fatigue properties of titanium alloys. However, the coarse beta-phase grains and the soft phase transformation product a alpha '' phase in TRIP titanium alloys impair their tensile strength, which restrict their applications in engineering. To this end, a Ti6Al4V5Cu alloy with TRIP effect was developed in this work. It was proposed to use the mutual restraint between the alpha and beta-phases in the material to refine the grains, and through composition optimization, the phase transformation product would be the alpha' phase, which has a higher strength than the a alpha '' phase. Thus, the strength of the Ti6Al4V5Cu alloy can be improved. The results showed that the tensile strength and elongation of the TRIP Ti6Al4V5Cu alloy was 1286 MPa and 22%, which was 23.7% and 46.7% higher than that of the traditional Ti6Al4V alloy, respectively. Besides, under the same strain amplitude, the fatigue life of the Ti6Al4V5Cu alloy was 2-5 times longer than that of the Ti6Al4V alloy. Furthermore, we clarified the mechanisms of improving the tensile strength and fatigue properties of the Ti6Al4V5Cu alloy, which would lay a research foundation for the development of high-performance titanium alloys. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Materials Science, Multidisciplinary

Facet-dependent CuO/{010}BiVO 4 S-scheme photocatalyst enhanced peroxymonosulfate activation for efficient norfloxacin removal

Tongyu Han, Haifeng Shi, Yigang Chen

Summary: In this study, a novel S-scheme system was built by combining CuO with BiVO4 to activate PMS for antibiotic degradation. The system exhibited excellent visible light absorption performance and remarkable charge separation ability, suggesting its potential application in enhancing PMS activation and purifying antibiotics in water.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

PVDF/6H-SiC composite fiber films with enhanced piezoelectric performance by interfacial engineering for diversified applications

Linlin Zhou, Tao Yang, Chunyu Guo, Kang Wang, Enhui Wang, Laipan Zhu, Hailong Wang, Sheng Cao, Kuo-Chih Chou, Xinmei Hou

Summary: Piezoelectric silicon carbide (SiC) has been considered for various applications due to its superior properties. However, its brittleness and unsatisfactory piezoelectric response have limited its use. In this study, PVDF/6H-SiC composite fiber films were fabricated and used for assembling high-performance energy harvesters and sensors. The results showed significant improvements in piezoelectric response and sensitivity compared to pure PVDF films. First-principles calculation and finite element analysis confirmed the effect of SiC nanoparticles on the composite film.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Precipitation transformation pathway and mechanical behavior of nanoprecipitation strengthened Fe-Mn-Al-C-Ni austenitic low-density steel

Y. F. An, X. P. Chen, L. Mei, P. Ren, D. Wei, W. Q. Cao

Summary: This study systematically investigates the precipitation sequence of Fe-28Mn-11Al-1C-5Ni austenitic low-density steel and its influence on mechanical properties. The results reveal the transformation pathway of kappa' -carbides and B2 particles under different aging conditions. This research is meaningful for guiding the design of new generation dual-nano precipitation austenitic lightweight steel.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Modulating oxygen vacancy concentration for selective growth of semiconducting single-walled carbon nanotubes with narrow diameters

Lei Yang, Tingkai Zhao, Abdul Jalil, Huijun Luo, Tao Jiang, Yuan Shu, Yazhou Yin, Weiyu Jia

Summary: In this study, a strategy utilizing oxygen vacancy concentration modulation was used to successfully grow semiconducting single-walled carbon nanotubes (s-SWCNTs) with narrow diameters. The Fe0.01Mg0.99O/CeO2(3) catalyst was employed to provide oxygen vacancies, allowing for selective etching of chemically active carbon nanotube caps during the growth process. The optimized conditions resulted in high purity s-SWCNTs with uniform diameters.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Letter Materials Science, Multidisciplinary

Corrosion-resistant chromium steels for oil and gas pipelines can suffer from very severe pitting corrosion by a sulfate-reducing bacterium

Lingjun Xu, Pruch Kijkla, Sith Kumseranee, Suchada Punpruk, Tingyue Gu

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Polydopamine wrapped polyaniline nanosheets: Synthesis and anticorrosion application for waterborne epoxy coatings

X. P. Hu, Y. H. Zhang, C. B. Liu, H. Z. Cui

Summary: In this study, a novel polyaniline (PANI) nanosheet with barrier and passivation functions was synthesized, and its interaction with polymeric resin was enhanced by polydopamine (PDA) wrapping. The composite coating with incorporated PANI@PDA nanosheets showed improved corrosion resistance by providing a longer penetration path and inducing the formation of a passivation film on the metal substrate.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption

Yan Zhang, Xuehua Liu, Zhiqiang Guo, Chenyu Jia, Feng Lu, Zirui Jia, Guanglei Wu

Summary: In this study, a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials. The hollow structure design and surface anchored growth of magnetic Co particles significantly enhanced the wave absorption performance of the absorber.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

Recent progress in CdS-based S-scheme photocatalysts

Yajing Ren, Yunfeng Li, Guixu Pan, Ning Wang, Yan Xing, Zhenyi Zhang

Summary: Photocatalytic technology utilizing sunlight as a driving force can convert solar energy into other energy sources for storage and use. CdS, as a typical reducing semiconductor, has attracted attention in photocatalysis due to its suitable bandgap and strong reducing ability. However, the photocatalytic performance of CdS is limited by carrier recombination and photocorrosion. Therefore, CdS has been widely developed as a reducing photocatalyst in constructing S-scheme heterojunctions to overcome these limitations.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Large deflection deformation behavior of a Zr-based bulk metallic glass for compliant spinal fixation application

Diao-Feng Li, Chun-Guang Bai, Zhi-Qiang Zhang, Hui-Bo Zhang, Nan Li, Jian Zhao

Summary: A novel compliant spinal fixation based on compliant mechanisms is designed to effectively reduce stress-shielding effect and adjacent segment degeneration (ASD), but it requires high properties of the used materials. Bulk metallic glasses (BMGs), as young biomaterials, demonstrate excellent comprehensive properties, making them attractive for compliant spinal fixation. In this study, the large deflection deformation behaviors of Zr61Ti2Cu25Al12 (at.%, ZT1) BMG beam were systematically investigated, including elastic, yielding, and plastic deformations. The theoretical nonlinear analytical solution curve predicts the load-deflection relation within the elastic deformation regime and assists in capturing the yielding event, serving as a powerful design tool for engineers. To accurately capture the beginning of the yielding event in biomedical implant applications, the concept of bending proof strength (sigma p,0.05%) with tiny permanent strain of 0.05% was proposed and determined, which is significant for setting the allowable operating limits of the basic flexible elements. The plastic deformation driven by the bending moment can be classified into two stages: the initial stage characterized by nucleation and intense interaction of shear bands, and the second stage dominated by the progressive propagation of shear bands and emergence of shear offsets. The plasticity of BMG beam structures depends on the BMG's inherent plastic zone size (rp), and when the half beam thickness is less than that of rp, the plastic deformation of BMGs behaves in a stable manner, effectively serving as the margin of safety.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

Recent progress in hydrogen: From solar to solar cell

Yanlin Li, Zhu Ma, Shanyue Hou, Qianyu Liu, Guangyuan Yan, Xiaoshan Li, Tangjie Yu, Zhuowei Du, Junbo Yang, Yi Chen, Wei You, Qiang Yang, Yan Xiang, Shufang Tang, Xuelin Yue, Meng Zhang, Wenfeng Zhang, Jian Yu, Yuelong Huang, Jiale Xie, Chun Tang, Yaohua Mai, Kuan Sun

Summary: This paper provides an overview of hydrogen progress from solar energy to solar cells, with a focus on photovoltaic-electrolysis and photoelectrochemical/photovoltaic systems. Both systems have achieved a solar-to-hydrogen efficiency of over 10% and show great potential for large-scale application. The challenges and opportunities in this field, including configuration design, electrode materials, and performance evaluation, are summarized. The paper also analyzes and presents perspectives on the potential commercial application and further scientific research for the development of solar-to-hydrogen.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Accelerating bainite transformation by concurrent pearlite formation in a medium Mn steel: Experiments and modelling

L. K. Huang, F. Liu, M. X. Huang

Summary: The bainite transformation in medium Mn steels has been experimentally and theoretically studied, and it has been found that the transformation kinetics is slow. However, the introduction of dislocations can significantly accelerate the transformation rate. A new "carbon depletion mechanism" is proposed to explain the role of dislocations in the acceleration of bainite transformation, and a physical model is developed to quantitatively understand the kinetics of bainite transformation.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

The vital application of rare earth for future high-performance electromagnetic wave absorption materials: A review

Jing Qiao, Lutong Li, Jiurong Liu, Na Wu, Wei Liu, Fan Wu, Zhihui Zeng

Summary: Rare earth plays a crucial role in electromagnetic wave absorption materials, and the strategies of doping rare earth elements and constructing rare earth oxide composites are important for the fabrication of high-efficiency electromagnetic wave absorption materials. This review provides a comprehensive summary of the research background, classification, features, progress, and future development of rare earth electromagnetic wave absorption materials, offering guidance for future development.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses

Jiacheng Ge, Yao Gu, Zhongzheng Yao, Sinan Liu, Huiqiang Ying, Chenyu Lu, Zhenduo Wu, Yang Ren, Jun-ichi Suzuki, Zhenhua Xie, Yubin Ke, Jianrong Zeng, He Zhu, Song Tang, Xun-Li Wang, Si Lan

Summary: Fe-based metallic glasses are promising materials in the fields of advanced magnetism and sensors. This study proposes a novel approach to tailor the amorphous structure through liquid-liquid phase transition, and provides insights into the correlation between structural disorder and magnetic order. The results show that the liquid-liquid phase transition can induce more locally ordered nanodomains, leading to stronger exchange interactions and increased saturation magnetization. The increased local heterogeneity also enhances magnetic anisotropy, resulting in a better stress-impedance effect.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption

Hao Yu, Xin Kou, Xueqing Zuo, Ding Xi, Haijun Guan, Pengfei Yin, Lijia Xu, Yongpeng Zhao

Summary: Metal-organic frameworks derived composites are promising EMW absorbers. Cation substitution can improve their absorption performance by regulating morphology and atomic space occupation. However, the mechanisms of how cation substitution affects EMW absorption performance are still not well understood. In this study, imidazolic MOFs were fabricated and tailored by cation substitution strategy to prepare porous composites. The samples showed optimal reflection loss and effective absorption bandwidth values under low filling rate and thin thickness conditions. The intercoupling between multiple atoms and the porous structure introduced by cation substitution contribute to the improved absorption performance.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Augmenting reactive species over MgIn2S4-In2O3 hybrid nanofibers for efficient photocatalytic antibacterial activity

Lina Wang, Peiyi Yan, Huairui Chen, Zhuo Li, Shu Jin, Xiaoxiang Xu, Jun Qian

Summary: The narrow bandgap semiconductor MgIn2S4 has been grown onto In2O3 nanofibers using an in situ growing method. The resulting MgIn2S4-In2O3 hybrid nanofibers exhibit strong visible light absorption and intimate MgIn2S4/In2O3 heterointerfaces, leading to highly efficient photocatalytic disinfection of Escherichia coli.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)