4.7 Article

Anti-fouling nanofiltration membranes based on macromolecule crosslinked polyvinyl alcohol

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jiec.2022.05.032

关键词

Polyvinyl alcohol; SMA; Crosslink; Nanofiltration

资金

  1. National Natural Science Foundation of China [21808174]
  2. Hubei three Gorges laboratory, China [SC212002]

向作者/读者索取更多资源

Nanofiltration membranes with excellent anti-fouling properties were fabricated through a green surface crosslink method. The membranes exhibited good dye/salts separation performance and excellent anti-fouling property.
Nanofiltration membranes with excellent anti-fouling properties were fabricated through a green surface crosslink method. Poly (styrene-maleic anhydride) (SMA) blended polyethersulfone (PES) membrane was used as a support. The SMA in the PES support served as a macromolecular crosslinker. After coating of polyvinyl alcohol (PVA) on the surface of the SMA-PES support, a PVA selective layer with gradient cross-linked structure was formed, through the esterification between the anhydride groups in SMA and the hydroxyl groups in PVA. This process adopts a full-water fabrication strategy without secondary pollution. The gradiently cross-linked PVA/SMA-PES membrane, with molecular weight cut-off (MWCO) about 600 Da and permeance around 10-12 L/(m(2).h.bar), exhibited good dye/salts separation performance. In the filtration of a mixed solution of Congo Red (CR) and calcium chloride (CaCl2), the membrane rejected 98% CR and only had 10% rejection of CaCl2. In addition, this membrane processed an excellent anti-fouling property. In the BSA fouling test, the pure water flux recovery ratio (FRR) was 99%. It is expected that the PVA/SMA-PES membrane can be used in organic desalination. (C) 2022 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据