4.7 Article

New design of U-turn type minichannel cold plate with hybrid fins for high temperature uniformity

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2022.106078

关键词

Liquid cooling; Temperature uniformity; Wavy fin; Hybrid fin; New design; Minichannel cold plate

资金

  1. National Natural Science Foundation of China [51576013]
  2. National Key R&D Program of China [2017YFB0102101]

向作者/读者索取更多资源

The thermo-hydraulic performance of cold plates is strongly influenced by the channel profiles and fin shapes. Shape optimization and asymmetric design can improve the flow rate and temperature uniformity of cold plates. Furthermore, the effects of fin shape and parameters on thermal performance are evaluated, and two novel cold plate designs are proposed.
The thermo-hydraulic performance of cold plates is strongly influenced by the channel profiles and fin shapes. First, a shape optimization of U-turn type liquid cold plates is performed employing a discrete adjoint method in this work. The better uniformity of flow rate in minichannel cold plates is obtained by applying the optimized design of structures for entrance and baffle regions. Compared with the baseline design, the standard deviation of the flow rate for the optimal design decreases by 82.76%. The temperature uniformity of liquid cold plates can be further improved by using an asymmetric design of the double flow paths. The standard deviation of the temperature of the heating wall surface in the optimal design decreased by 20.75% compared with that of the conventional design. Furthermore, the roles of fin shape (rectangular, discontinuous, and wavy), fin thickness, and amplitude, wavelength and phase difference of sinusoidal wavy fin on the thermal performance of liquid cold plates having the asymmetric design with the curved baffle proposed are evaluated in detail. The results reveal that the larger amplitude, the smaller wavelength, the greater phase difference of wavy units may contribute to the greater heat transfer performance and the better temperature uniformity of cold plates. The heat transfer augmentation is attributed to the formation of vortices in the channel caused by the wavy fins and the increase of heat transfer surface area caused by the corrugated walls. As a result, two novel designs of minichannel cold plate were presented. New design of minichannel cold plate with wavy fins exhibits better heat transfer performance, while the other design with hybrid fins has more advantages to enhance temperature uniformity. The obtained results demonstrate that the new designs proposed have better temperature uniformity than the initial design of cold plates having straight rectangular minichannels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据