4.7 Article

Polysaccharide-based delivery system for curcumin: Fabrication and characterization of carboxymethylated corn fiber gum/chitosan biopolymer particles

期刊

FOOD HYDROCOLLOIDS
卷 125, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2021.107367

关键词

Biopolymer particles; Corn fiber gum; Carboxymethylation; Curcumin; Electrostatic interactions

资金

  1. Innovative Talent Promotion Program-Technology Innovation Team [2019TD-006]

向作者/读者索取更多资源

A novel polysaccharide-based particle as a curcumin carrier was developed through self-assembly, showing excellent stability and bioaccessibility in vitro.
Polysaccharide-based biopolymer particles are known as biocompatible, sustainable and easy to be modified, and widely used in food and biomedical fields. In this study, a novel polysaccharide-based particle as curcumin (Cur) carrier was developed through self-assembly driven by electrostatic interactions between carboxymethylated corn fiber gum (CMCFG) and chitosan (Cs). Firstly, the chemical structure of synthesized CMCFG was characterized to prove successful carboxymethylation. Then Cur-loaded CMCFG/Cs particles (Cur-CMCsPs) with different mass ratios of CMCFG to Cs (1:3, 1:2, 1:1, 2:1 and 3:1) were prepared and their particle size, zetapotential, crystalline structure and micro-morphology were determined. Smaller particle size was observed when the mass ratio of CMCFG to Cs exceeded 1:1, among which the lowest hydrodynamic diameter was less than 300 nm, as uniform spherical particles. Furthermore, the highest encapsulation efficiency of the resulting Cur-CMCsPs surpassed 93% and the Cur loaded in particles showed the excellent photo/thermal stability. Besides, the particles could significantly improve the bioaccessibility of Cur reaching 74.94%. This study provides strategy support for suitably designing biopolymer particles as delivery vehicles of hydrophobic nutrients in food and biomedical fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据