4.7 Article

A mechanistic model of functional response provides new insights into indirect interactions among arctic tundra prey

期刊

ECOLOGY
卷 103, 期 8, 页码 -

出版社

WILEY
DOI: 10.1002/ecy.3734

关键词

arctic fox (Vulpes lagopus); indirect effects; lemmings; multi-prey; nonlinear species interactions; passerines; predation; predator-prey interactions; sandpipers

类别

资金

  1. Arctic Goose Joint Venture
  2. ArcticNet Network of Centers of Excellence
  3. Canada Foundation for Innovation
  4. Canada Research Chairs
  5. Environment Canada
  6. Fonds de Recherche du Quebec -Nature et Technologies
  7. International Polar Year program of Indian and Northern Affairs Canada
  8. Natural Sciences and Engineering Research Council of Canada
  9. Northern Scientific Training Program
  10. Polar Knowledge Canada
  11. Universite du Quebec a Rimouski
  12. Universite Laval
  13. W. Garfield Weston Foundation

向作者/读者索取更多资源

Research shows that in the arctic tundra, changes in predator foraging behavior in response to prey density play a significant role in generating positive indirect effects between prey that share a predator.
Prey handling processes are considered a dominant mechanism leading to short-term positive indirect effects between prey that share a predator. However, a growing body of research indicates that predators are not necessarily limited by such processes in the wild. Density-dependent changes in predator foraging behavior can also generate positive indirect effects but they are rarely included as explicit functions of prey densities in functional response models. With the aim of untangling proximate mechanisms of species interactions in natural communities and improving our ability to quantify interaction strength, we extended the multi-prey version of the Holling disk equation by including density-dependent changes in predator foraging behavior. Our model, based on species traits and behavior, was inspired by the vertebrate community of the arctic tundra, where the main predator (the arctic fox) is an active forager feeding primarily on cyclic small rodent (lemming) and eggs of various tundra-nesting bird species. Short-term positive indirect effects of lemmings on birds have been documented over the circumpolar Arctic but the underlying mechanisms remain poorly understood. We used a unique data set, containing high-frequency GPS tracking, accelerometer, behavioral, and experimental data to parameterize the multi-prey model, and a 15-year time series of prey densities and bird nesting success to evaluate interaction strength between species. We found that (1) prey handling processes play a minor role in our system and (2) changes in arctic fox daily activity budget and distance traveled can partly explain the predation release on birds observed during lemming peaks. These adjustments in predator foraging behavior with respect to the main prey density thus appear as the dominant mechanism leading to positive indirect effects commonly reported among arctic tundra prey. Density-dependent changes in functional response components have been little studied in natural vertebrate communities and deserve more attention to improve our ability to quantify the strength of species interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据