4.7 Review

Diabetic retinopathy screening in the emerging era of artificial intelligence

期刊

DIABETOLOGIA
卷 65, 期 9, 页码 1415-1423

出版社

SPRINGER
DOI: 10.1007/s00125-022-05727-0

关键词

Artificial intelligence; Blindness; Convolutional neural network; Deep learning; Diabetic macular oedema; Diabetic retinopathy; Handheld mobile devices; Proliferative diabetic retinopathy; Review; Screening; Telemedicine

向作者/读者索取更多资源

Diabetic retinopathy is a common complication in diabetes that leads to visual impairment. Regular eye screening and automated deep learning algorithms can help detect and treat sight-threatening stages of the disease, reducing the risk of visual loss.
Diabetic retinopathy is a frequent complication in diabetes and a leading cause of visual impairment. Regular eye screening is imperative to detect sight-threatening stages of diabetic retinopathy such as proliferative diabetic retinopathy and diabetic macular oedema in order to treat these before irreversible visual loss occurs. Screening is cost-effective and has been implemented in various countries in Europe and elsewhere. Along with optimised diabetes care, this has substantially reduced the risk of visual loss. Nevertheless, the growing number of patients with diabetes poses an increasing burden on healthcare systems and automated solutions are needed to alleviate the task of screening and improve diagnostic accuracy. Deep learning by convolutional neural networks is an optimised branch of artificial intelligence that is particularly well suited to automated image analysis. Pivotal studies have demonstrated high sensitivity and specificity for classifying advanced stages of diabetic retinopathy and identifying diabetic macular oedema in optical coherence tomography scans. Based on this, different algorithms have obtained regulatory approval for clinical use and have recently been implemented to some extent in a few countries. Handheld mobile devices are another promising option for self-monitoring, but so far they have not demonstrated comparable image quality to that of fundus photography using non-portable retinal cameras, which is the gold standard for diabetic retinopathy screening. Such technology has the potential to be integrated in telemedicine-based screening programmes, enabling self-captured retinal images to be transferred virtually to reading centres for analysis and planning of further steps. While emerging technologies have shown a lot of promise, clinical implementation has been sparse. Legal obstacles and difficulties in software integration may partly explain this, but it may also indicate that existing algorithms may not necessarily integrate well with national screening initiatives, which often differ substantially between countries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据