4.7 Article

Effective time-dependent behavior of three-phase polymer matrix smart composites

期刊

COMPOSITE STRUCTURES
卷 289, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2022.115457

关键词

Three-phase composite; Polymer matrix composite; Time-dependent behavior; Magnetoelectric coupling; Micromechanics

资金

  1. Ministry of Science and Tech-nology (MOST) , Taiwan, R.O.C. [MOST 110-2221-E-006-148]

向作者/读者索取更多资源

This study presents a mathematical framework to predict the time-dependent behavior of three-phase smart composites using a combination of linearization and numerical algorithms. The inclusion of a polymer matrix in the composite leads to creep in the magneto electric coupling. The proposed micromechanics model can be integrated into finite element analysis for practical applications.
This study presents a mathematical framework to predict the effective time-dependent behavior of three-phase smart composites with typical 0-3, 1-3, and 2-2 connectivities. A composite is composed of magnetostrictive and piezoelectric reinforcements that both show nonlinear multiphysics coupling and a polymer matrix that exhibits viscoelastic behavior. For dealing with nonlinear and time-dependent problems, a tangent linearization is employed to linearize the nonlinear constituents and a time-integration algorithm is applied to numerically determine the viscoelastic response of the matrix. A unified constitutive equation can be subsequently formulated to cover various phase constitutive laws following by a simplified unit-cell micromechanics model to set up a composite constitutive relation. The presented formulation is validated by limited experimental data available in literatures. Numerical results show that inclusion of a polymer matrix in a smart composite causes magneto electric coupling to be creep due to strain-mediated coupling among these three phases. The established unit-cell micromechanics model can be further integrated into a finite element framework to analyze composite structures, which is a great merit in a variety of practical applications. It will do so by implementing the presented micromechanics method at every integration point.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据