4.7 Article

Synergetic mechanism of defective g-C3N4 activated persulfate on removal of antibiotics and resistant bacteria: ROSs transformation, electron transfer and noncovalent interaction

期刊

CHEMOSPHERE
卷 294, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.133741

关键词

Vacancy g-C 3 N 4; Antibiotic; Antibiotic-resistant bacteria; DFT simulation

资金

  1. National Natural Science Foundation of China [52170065]
  2. Center for High Performance Computing at Beijing Jiaotong University

向作者/读者索取更多资源

This study constructed an efficient synergistic system composed of vacancy g-C3N4 and persulfate, which showed excellent oxidation performance in degrading antibiotics and antibiotic-resistant bacteria. The results revealed that CNV0.8 had better activation ability of persulfate compared to BCN. The findings have important implications for understanding the environmental hazards of antibiotics and antibiotic-resistant bacteria.
The environmental hazards of antibiotics and the resulting antibiotic-resistant bacteria (ARB) have attracted more and more attention. In this study, an efficient synergistic system constructed by vacancy g-C3N4 (CNV0.8) and persulfate (PS) showed excellent oxidation performance to degrade aztreonam (AZT) and Escherichia coli (E. coli) screened from wastewater treatment plant (WWTP), as the typical beta-lactam antibiotic and ARB. As the recombination of electron and hole was effectively inhibited and the interaction with PS was enhanced after the introduction of defects, CNV0.8 showed superior PS activation ability compared with bulk-g-C3N4 (BCN). The synergistic mechanism was systematically analyzed at three levels step by step. Firstly, the conversion of reactive oxygen radicals (ROSs) was studied using electron spin resonance (ESR) and quenching experiments. Then based on the DFT simulation, the enhancement of adsorption energy between catalysts and PS from -8.924 eV (BCN) to -11.190 eV (CNV0.8) and the elongation of O-O bond in PS (from 1.496 angstrom to 1.505 angstrom) indicated CNV0.8 had better activation performance for PS compared with BCN. The electron transfer results observed by deformation charge density showed that more electrons could be transferred from the CNV0.8 layer to the surrounding of PS for its own activation in the synergistic mechanism. Thirdly, the noncovalent interaction of PS/CNV0.8 belonged to the region of van der Waals force which was defined by the reduced density gradient (RDG) analysis. The intermediate products in the degradation of AZT were first studied in detail using Fukui function calculations and

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据