4.7 Article

Engineering Cu-CuFe2O4 nanoenzyme for hypoxia-relief and GSH-depletion enhanced chemodynamic/sonodynamic therapy

期刊

CHEMICAL ENGINEERING JOURNAL
卷 435, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.135083

关键词

Fenton reaction; Tumor microenvironment; Nanoenzyme; Chemodynamic therapy; Sonodynamic therapy

资金

  1. National Natural Science Foundation of China [21904010, 21875008, 51773017]
  2. Excellent Young Scientists Fund [22022407]
  3. Fundamental Research Funds for the Central Universities [FRF-TP-19-021A1, FRF-BR-20-03B]

向作者/读者索取更多资源

In this study, a novel Cu-CuFe2O4 nanoenzyme was developed for simultaneous relief of hypoxia and depletion of GSH, enhancing the therapeutic effect of ROS-involved therapy. The nanoenzyme exhibited catalytic activities to continuously generate oxygen from tumor-overexpressed hydrogen peroxide, facilitating hypoxia-relieved sonodynamic therapy. Additionally, the Cu-CuFe2O4 NPs reacted with GSH to generate abundant hydroxyl radicals for chemodynamic therapy. The efficient anticancer ability of Cu-CuFe2O4 NPs was demonstrated in MCF-7 cell killing and multicellular tumor spheroids elimination.
Specific hypoxia and overexpressed glutathione (GSH) in the tumor microenvironment (TME) are bottleneck for reactive oxygen species (ROS)-involved therapy performance. Herein, we report a novel Cu-CuFe2O4 nanoenzyme enables simultaneous hypoxia relief and GSH depletion for efficiently augmenting ROS-involved chemodynamic (CDT)/sonodynamic (SDT) therapy. The nanoenzyme exhibited both catalase-like and GSH peroxidase-like catalytic activities, which can persistently catalyze tumor-overexpressed hydrogen peroxide (H2O2) to generate oxygen (O-2) to facilitate singlet oxygen (O-1(2)) production under an external ultrasound, achieving hypoxia-relieved SDT. Meanwhile, the Cu-CuFe2O4 NPs reacted with GSH to deplete GSH and release Fenton-like Cu+ and Fe2+ ions to mediate abundant hydroxyl radical ((OH)-O-center dot) production for CDT. Highly efficient anticancer ability of the Cu-CuFe2O4 NPs was demonstrated from the efficient MCF-7 cells killing and multicellular tumor spheroids (MCTS) elimination. This work provides a useful strategy to design multi-mode TME-responsive nanosonosensitizer for enhancing therapeutic effect of cancer therapy via persistent and simultaneous regulatory of TME, showing a great potential for clinical cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据