4.7 Article

Rapid temperature swing adsorption using microwave regeneration for carbon capture

期刊

CHEMICAL ENGINEERING JOURNAL
卷 446, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.137345

关键词

CO2 capture; Electrification; Adsorption; Microwave regeneration; Activated carbon

资金

  1. [2019-RPF-1]

向作者/读者索取更多资源

This study evaluates the use of microwave heating for thermal regeneration in adsorptive carbon capture. The results show that microwave heating can achieve extremely fast desorption and swift adsorption-desorption cycles. Compared to reference thermal swing adsorption processes, microwave swing adsorption outperforms in terms of heating rates. The study also demonstrates high reproducibility in regenerating the adsorption bed without damaging the material's microporosity.
The use of microwave heating for the thermal regeneration of a porous carbon adsorbent in adsorptive carbon capture was evaluated. In this Microwave Swing Adsorption (MSA) process, a multimode microwave oven has been used to accelerate the desorption of CO(2 )after the adsorption of a CO2 / N2 (15/85 v/v) mixture. Starting from a commercial activated carbon (AC) material (MSP-20X), sorbent extrudates were prepared and loaded in a Teflon column. The heating of the sorbent bed inside the microwave (MW) cavity was characterised at different locations. Although the adsorption bed is not heated uniformly due to hot spots in the multimode MW cavity, flowing a purge gas reduces the non-uniform heating during the regeneration step. This study also reports that MSA regeneration achieves extremely fast total desorption (in 56 to 79 s), the quickest regeneration reported up to date in MSA, and very rapid desorption rates allowing swift adsorption-desorption cycles. This fast desorption is associated with the extremely high heating rates achieved (100 to 400 ?C/min). We show that the desorption rate is faster when using higher powers at practically identical MW energy inputs. Complete CO2 desorption can be achieved at slightly longer durations when using 2-step MW heating. When comparing the MSA results with a reference TSA process, MSA outperforms TSA, due to the higher heating rates achieved by MSA. During eleven adsorption-desorption cycles, it is evidenced that the MSA process can regenerate the adsorption bed at a high reproducibility. The microporosity of the material remained intact during the MSA, revealing that localised heating and the high heating rates are not damaging the sorbent material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据