4.6 Article

Microwell Fluoride Screen for Chemical, Enzymatic, and Cellular Reactions Reveals Latent Microbial Defluorination Capacity for -CF3 Groups

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/aem.00288-22

关键词

fluoride; screening; organofluorine; PFAS; defluorination; Pseudomonas putida F1; bacteria; trifluoromethyl; high throughput

资金

  1. MnDRIVE Industry
  2. ExxonMobil Environmental and Property Solutions Company

向作者/读者索取更多资源

Thousands of organofluorine chemicals are known to be persistent and toxic environmental pollutants, but few bacteria biodegrade fluorinated chemicals. A rapid screening method was developed to discover new organofluoride biodegradation, revealing 21 new microbial defluorination reactions. A general mechanism was delineated for the biodegradation of trifluoromethylphenyl groups that are increasingly being used in drugs and pesticides.
Thousands of organofluorine chemicals are known, and a number are considered to be persistent and toxic environmental pollutants. Environmental bioremediation methods are avidly being sought, but few bacteria biodegrade fluorinated chemicals. The capacity to defluorinate polyfluorinated organic compounds is a rare phenotype in microbes but is increasingly considered important for maintaining the environment. New discoveries will be greatly facilitated by the ability to screen many natural and engineered microbes in a combinatorial manner against large numbers of fluorinated compounds simultaneously. Here, we describe a low-volume, high-throughput screening method to determine defluorination capacity of microbes and their enzymes. The method is based on selective binding of fluoride to a lanthanum chelate complex that gives a purple-colored product. It was miniaturized to determine biodefluorination in 96-well microtiter plates by visual inspection or robotic handling and spectrophotometry. Chemicals commonly used in microbiological studies were examined to define usable buffers and reagents. Base-catalyzed, purified enzyme and whole-cell defluorination reactions were demonstrated with fluoroatrazine and showed correspondence between the microtiter assay and a fluoride electrode. For discovering new defluorination reactions and mechanisms, a chemical library of 63 fluorinated compounds was screened in vivo with Pseudomonas putida F1 in microtiter well plates. These data were also calibrated against a fluoride electrode. Our new method revealed 21 new compounds undergoing defluorination. A compound with four fluorine substituents, 4-fluorobenzotrifluoride, was shown to undergo defluorination to the greatest extent. The mechanism of its defluorination was studied to reveal a latent microbial propensity to defluorinate trifluoromethylphenyl groups, a moiety that is commonly incorporated into numerous pharmaceutical and agricultural chemicals. IMPORTANCE Thousands of organofluorine chemicals are known, and a number are considered to be persistent and toxic environmental pollutants. Environmental bioremediation methods are avidly being sought, but few bacteria biodegrade fluorinated chemicals. To find new organofluoride biodegradation, a rapid screening method was developed. The method is versatile, monitoring chemical, enzymatic, and whole-cell biodegradation. Biodegradation of organofluorine compounds invariably releases fluoride anions, which was sensitively detected. Our method uncovered 21 new microbial defluorination reactions. A general mechanism was delineated for the biodegradation of trifluoromethylphenyl groups that are increasingly being used in drugs and pesticides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据