4.8 Article

CRISPR/Cas12a-Triggered Chemiluminescence Enhancement Biosensor for Sensitive Detection of Nucleic Acids by Introducing a Tyramide Signal Amplification Strategy

期刊

ANALYTICAL CHEMISTRY
卷 94, 期 23, 页码 8506-8513

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c01507

关键词

-

资金

  1. National Natural Science Foundation of China [81901536]
  2. Project of Children's Hospital Affiliated with Zhejiang University School of Medicine [Y021026]

向作者/读者索取更多资源

In this study, a CRISPR/Cas12a-triggered chemiluminescence enhancement biosensor named CRICED was developed for ultrasensitive nucleic acid detection. The biosensor showed high sensitivity and specificity in detecting synthetic DNA targets, amplified DNA plasmids, and clinical samples, demonstrating its potential for practical applications in CRISPR-based diagnostics.
CRISPR-based biosensors have attracted increasing attention in accurate and sensitive nucleic acid detection. In this work, we report a CRISPR/Cas12a-triggered chemiluminescence enhancement biosensor for the ultrasensitive detection of nucleic acids by introducing tyramide signal amplification for the first time (termed CRICED). The hybrid chain DNA (crDNA) formed by NH2-capture DNA (capDNA) and biotin-recognition DNA (recDNA) was preferentially attached to the magnetic beads (MBs), and the streptavidin-HRP was subsequently introduced to obtain MB@HRP-crDNA. In the presence of the DNA target, the activated CRISPR/Cas12a is capable of randomly cutting initiator DNA (intDNA) into vast short products, and thus the fractured intDNA could not trigger the toehold-mediated DNA-strand displacement reaction (TSDR) event with MB@HRP-crDNA. After the addition of tyramine-AP and H2O2, abundant HRP-tyramine-AP emerges through the covalent attachment of HRP-tyramine, exhibiting enhanced chemiluminescence (CL) signals or visual image readouts. By virtue of this biosensor, we achieved high sensitivity of synthetic DNA target and amplified DNA plasmid using recombinase polymerase amplification (RPA) as low as 17 pM and single-copy detection, respectively. Our proposed CRICED was further evaluated to test 20 HPV clinical samples, showing a superior sensitivity of 87.50% and specificity of 100.00%. Consequently, the CRICED platform could be an attractive means for ultrasensitive and imaging detection of nucleic acids and holds a promising strategy for the practical application of CRISPR-based diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据