4.8 Article

Ultrasensitive Airflow Sensors Based on Suspended Carbon Nanotube Networks

期刊

ADVANCED MATERIALS
卷 34, 期 18, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202107062

关键词

airflow; carbon nanotubes; networks; sensors; suspended carbon nanotube networks

资金

  1. National Natural Science Foundation of China [51872156, 22075163]
  2. National Key Research Program [2020YFC2201103, 2020YFA0210702]

向作者/读者索取更多资源

This article presents suspended carbon nanotube networks (SCNTNs) as high-performance airflow sensors, achieving a short response time, high sensitivity, small detection threshold, and wide detection range, surpassing most existing airflow sensors.
High-performance airflow sensors are in great demand in numerous fields but still face many challenges, such as slow response speed, low sensitivity, large detection threshold, and narrow sensing range. Carbon nanotubes (CNTs) exhibit many advantages in fabricating airflow sensors due to their nanoscale diameters, excellent mechanical and electrical properties, and so on. However, the intrinsic extraordinary properties of CNTs are not fully exhibited in previously reported CNT-based airflow sensors due to the mixed structures of macroscale CNT assemblies. Herein, this article presents suspended CNT networks (SCNTNs) as high-performance airflow sensors, which are self-assembled by ultralong CNTs and short CNTs in a one-step floating catalyst chemical vapor deposition process. The SCNTN-based airflow sensors achieved a record-breaking short response time of 0.021 s, a high sensitivity of 0.0124 s m(-1), a small detection threshold of 0.11 m s(-1), and a wide detection range of approximate to 0.11-5.51 m s(-1), superior to most of the state-of-the-art airflow sensors. To reveal the sensing mechanism, an acoustic response testing system and a mathematical model are developed. It is found that the airflow-caused intertube stress change resulted in the resistance variation of SCNTNs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据