4.8 Article

Hydrogen-Bonding Affords Sustainable Plastics with Ultrahigh Robustness and Water-Assisted Arbitrarily Shape Engineering

期刊

ADVANCED MATERIALS
卷 34, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202201065

关键词

hydrogen bonds; infrared spectroscopy; mechanical robustness; plastic-like hydrogels; water-processable plastics

资金

  1. National Natural Science Foundation of China (NSFC) [21803010, 51733003, 51973035]

向作者/读者索取更多资源

In this study, a supramolecular plastic-like hydrogel (SPH) platform is introduced to fabricate sustainable plastics with ultrahigh stiffness and strength, as well as water-assisted arbitrarily shapeable capability. The resulting transparent plastics, constructed from SPHs of cellulose ether/polycarboxylic acid complexes, exhibit mechanical robustness superior or comparable to most common plastics. The shape of the plastics can be reversibly engineered by air drying of the SPHs with diverse 2D/3D shapes and structures.
Herein, the supramolecular plastic-like hydrogel (SPH) is introduced as a platform to fabricate sustainable plastics with ultrahigh stiffness and strength as well as water-assisted arbitrarily shapeable capability. The transparent plastics are constructed from SPHs of cellulose ether/polycarboxylic acid complexes and demonstrate mechanical robustness with Young's modulus up to 3.4 GPa and tensile strength up to 124.0 MPa, superior or comparable to most common plastics. Meanwhile, the shape of the plastics can be reversibly engineered by air drying of the SPHs with diverse 2D/3D shapes and structures, which are generated conveniently via origami, kirigami, embossing, etc., in virtue of plastic deformation and shape memory effect of SPHs. On the basis of multi-dimensional infrared-spectral analysis, it is revealed that the dense acid-acid and acid-ether hydrogen (H)-bonding network in the plastic is responsible for the mechanical robustness while the evolution of water-polymer H-bonds into polymer-polymer H-bonds during air drying contributes to the shape fixing. This work provides a novel method of manufacturing sustainable plastics with simultaneous strong mechanical performance and convenient processibility from hydrogels with plastic-like mechanical behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据