4.7 Article

Cutting force prediction for ultra-precision diamond turning by considering the effect of tool edge radius

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2016.06.005

关键词

Ultra precision diamond turning; Cutting force model; Tool edge radius; Minimum chip thickness; Elastic recovery

资金

  1. Research Committee of the Hong Kong Polytechnic University [RTAC]

向作者/读者索取更多资源

Many studies have been conducted to develop algorithms for cutting force prediction in a variety of machining process. However, few studies have developed the cutting force prediction algorithm by considering the effect of tool edge radius in ultra-precision diamond turning, including fast tool servo/slow tool servo assisted diamond turning. This paper presents a cutting force prediction algorithm for the ultra-precision diamond turning, which is able to take into account the effect of tool edge radius. The developed algorithm is general for predicting cutting force in most cylindrical diamond turning processes such as fast tool servo/slow tool servo assisted diamond turning. Experiments are conducted to validate the cutting force prediction algorithm. The experimental results verify the assumed relationship between the chip formation and the minimum chip thickness, where the work material is entirely removed when the uncut chip thickness is larger than a certain value. The estimated value of minimum chip thickness is obtained. The measured cutting force shows good agreement with the simulated value. In addition, the friction induced vibration due to elastic recovery occurs when a worn diamond cutting tool is adopted in the experiment. (C) 2016 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据