4.7 Article

Modeling and simulation of the high-speed milling of hardened steel SKD11 (62HRC) based on SHPB technology

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2016.05.005

关键词

Hardened steel; High-speed milling; Finite element model; Stress-strain relation; Split Hopkinson pressure bar

资金

  1. Key Program of Natural Science Foundation of China-Guangdong Joint Fund, China [U1201245]

向作者/读者索取更多资源

An easy-to-produce sawtooth chip is the main feature of the high-speed milling of hardened steel. In previous works, a theoretical geometric model was proposed for the sawtooth chip formation to predict the strain and strain rate in the shear band during chip formation; these properties are important when describing the deformation characteristics for the cutting of hardened steel materials. In the cutting process, however, the changes and distributions of stress and strain can hardly be obtained using a theoretical model. This paper modifies the conventional empirical JohnsonCook constitutive equation by employing stressstrain curves at high temperature and a high strain rate obtained using split Hopkinson pressure bar technology and considering the negative strain rate effect and temperature effect of the material, especially for SKD11 (62 HRC) hardened steel. A thermo-mechanical coupled two-dimensional planar strain finite element model for the high-speed milling of SKD11 hardened steel with a modified JohnsonCook constitutive equation is presented. The geometric characteristics of chip formation during the high-speed milling of SKD11 are predicted and the results are in good agreement with experimental results. Employing the modified finite element model, the stress and strain in the shear band during high-speed cutting are quantitatively analyzed and found to be in close agreement with the results of a theoretical model analysis. It is found that the cutting speed has a critical value at which the stress and strain reach a certain value and the distributions of stress and strain change in the shear band, resulting in the generation of a sawtooth chip. Moreover, the cutting force, cutting temperature, and selection of a coated tool are discussed according to results obtained with the modified finite element model. The cutting force and difference in temperature decrease while the temperature increases as the cutting speed increases. Compared with a TiAlN-coated tool, a TiSiN-coated tool performs better in cutting SKD11 hardened steel in terms of the cutting temperature. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据