4.7 Article

The thin film flow of Al2O3 nanofluid particle over an unsteady stretching surface

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2021.101695

关键词

Thin film; Shape factor; Convective boundary conditions; Al2O3-nanofluid; Heat transfer

资金

  1. University of Central Asia [DMNS/FRSF-2021-03]

向作者/读者索取更多资源

This study numerically analyzes the thermophysical properties of base fluid with different-shaped Al2O3 particles in the unsteady thin film flow heat transfer. The results show that Al2O3 nanoparticles in a platelet form have a high flow and heat transfer rate.
This work emphasizes the thermophysical properties of base fluid with different-shaped Al2O3 particles in the heat transfer of an unsteady thin film flow over a stretching layer. The study is performed under convective boundary conditions. A system of Partial Differential Equations (PDEs) is formed through detailed mathematical modeling. Using an appropriate set of similarity transformations, PDEs' system is transformed into a set of nonlinear ordinary differential equations (ODE). The system of ordinary differential equations is solved in MATLAB using BVP4C. The graphical simulations analyze the impact of multi-shape Al2O3 nanoparticles and other physically significant related parameters such as Prandtl, Eckert and biot-numbers on the flow and heat transfer characteristics. In addition, the coefficient of skin friction and Nusselt number are measured and tabulated numerically for discussion. The study shows that Al2O3 nanoparticles have a high flow and heat transfer rate in a platelet form. Moreover, the temperature profile increases by growing the volume-fraction parameter and the biot-number, but the reverse pattern is found only for the slip parameter. The study is in excellent agreement with existing literature for a limited number of cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据