4.7 Article

Force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2016.05.045

关键词

Silicon nanowire; Microchannel; Flow boiling; Surface tension force; Inertia force; Contact angle

资金

  1. NASA [NNX14AN07A]
  2. National Science Foundation [ECS-0335765, ECS-1542174]
  3. NASA [NNX14AN07A, 677203] Funding Source: Federal RePORTER

向作者/读者索取更多资源

In microchannel flow boiling, bubble nucleation, growth and flow regime development are highly influenced by channel cross-section and physical phenomena underlying this flow boiling mechanism are far from being well-established. Relative effects of different forces acting on wall-liquid and liquid vapor interface of a confined bubble play an important role in heat transfer performances. Therefore, fundamental investigations are necessary to develop enhanced microchannel heat transfer surfaces. Force analysis of nucleating bubble and bubble dynamics in flow boiling silicon nanowire microchannels have been performed based on theoretical, experimental and visualization studies. The relative effects of different forces on flow regimes, instabilities and heat transfer performances of flow boiling in silicon nanowire microchannels have been identified. Inertia, surface tension, shear, buoyancy, and evaporation momentum forces have significant importance at liquid vapor interface as discussed earlier by other researchers. However, no comparative study has been done for different surface properties till date. Detail analyses of these forces including contact angle effect, channel dimension effect, heat flux effect and mass flux effect in flow boiling microchannels have been conducted in this study. A comparative study between silicon nanowire and plainwall microchannels has been performed based on force analysis in the flow boiling microchannels. Compared to plainwall microchannels, enhanced surface rewetting and CHF are owing to higher surface tension force at liquid vapor interface and Capillary dominance resulting from silicon nanowires. Whereas, low Weber number in silicon nanowire helps maintaining uniform and stable thin film and improves heat transfer performances. Moreover, results from these studies are compared with the literatures and great agreements have been observed. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据