4.4 Article

Intrinsic Tendon Regeneration After Application of Purified Exosome Product: An In Vivo Study

期刊

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/23259671211062929

关键词

tendon healing; exosomes; tendon biomechanics; growth factors; healing enhancement; tissue engineering; injury prevention

向作者/读者索取更多资源

In this study, the effects of a purified exosome product (PEP) loaded onto a collagen scaffold on tendon healing were investigated using an in vivo rabbit model. The results indicated that the PEP-treated tendons showed a preference for intrinsic healing and had a significant reduction in adhesion formation compared to the control groups. Further analysis revealed that despite a smaller cross-sectional area, tendons treated with PEP exhibited similar ultimate tensile stress, suggesting promise for PEP in treating tendon injuries and promoting intrinsic healing.
Background: Tendons are primarily acellular, limiting their intrinsic regenerative capabilities. This limited regenerative potential contributes to delayed healing, rupture, and adhesion formation after tendon injury. Purpose: To determine if a tendon's intrinsic regenerative potential could be improved after the application of a purified exosome product (PEP) when loaded onto a collagen scaffold. Study Design: Controlled laboratory study. Methods: An in vivo rabbit Achilles tendon model was used and consisted of 3 groups: (1) Achilles tenotomy with suture repair, (2) Achilles tenotomy with suture repair and collagen scaffold, and (3) Achilles tenotomy with suture repair and collagen scaffold loaded with PEP at 1 x 10(12) exosomes/mL. Each group consisted of 15 rabbits for a total of 45 specimens. Mechanical and histologic analyses were performed at both 3 and 6 weeks. Results: The load to failure and ultimate tensile stress were found to be similar across all groups (P >= .15). The tendon cross-sectional area was significantly smaller for tendons treated with PEP compared with the control groups at 6 weeks, which was primarily related to an absence of external adhesions (P = .04). Histologic analysis confirmed these findings, demonstrating significantly lower adhesion grade both macroscopically (P = .0006) and microscopically (P = .0062) when tendons were treated with PEP. Immunohistochemical staining showed a greater intensity for type 1 collagen for PEP-treated tendons compared with collagen-only or control tendons. Conclusion: Mechanical and histologic results suggested that healing in the PEP-treated group favored intrinsic healing (absence of adhesions) while control animals and animals treated with collagen only healed primarily via extrinsic scar formation. Despite a smaller cross-sectional area, treated tendons had the same ultimate tensile stress. This pilot investigation shows promise for PEP as a means of effectively treating tendon injuries and enhancing intrinsic healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据