4.6 Article

Genomic Characterization of Two Novel RCA Phages Reveals New Insights into the Diversity and Evolution of Marine Viruses

期刊

MICROBIOLOGY SPECTRUM
卷 9, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/Spectrum.01239-21

关键词

Roseobacter RCA lineage; RCA phages; comparative genomics; phage evolution; functional module

资金

  1. National Natural Science Foundation of China [42076105]

向作者/读者索取更多资源

This study characterizes two new RCA phages, CRP-9 and CRP-13, which represent a novel evolutionary lineage of marine phages. Genomic analysis reveals a genomic recombination event between distinct phage groups, expanding the understanding of marine roseophages. Recombination is shown to be a major driver of phage evolution, showcasing the critical role it plays in shaping phage diversity.
Viruses are the most abundant living entities in marine ecosystems, playing critical roles in altering the structure and function of microbial communities and driving ocean biogeochemistry. Phages that infect Roseobacter clade-affiliated (RCA) cluster strains are an important component of marine viral communities. Here, we characterize the genome sequences of two new RCA phages, CRP-9 and CRP-13, which infect RCA strain FZCC0023. Genomic analysis reveals that CRP-9 and CRP-13 represent a novel evolutionary lineage of marine phages. They both have a DNA replication module most similar to those in Cobavirus group phages. In contrast, their morphogenesis and packaging modules are distinct from those in cobaviruses but homologous to those in HMO-2011-type phages. The genomic architecture of CRP-9 and CRP-13 suggests a genomic recombination event between distinct phage groups. Metagenomic data sets were examined for metagenome-assembled viral genomes (MAVGs) with similar recombinant genome architectures. Fifteen CRP-9-type MAVGs were identified from marine viromes. Additionally, 158 MAVGs were identified containing HMO-2011-type morphogenesis and packaging modules with other types of DNA replication genes, providing more evidence that recombination between different phage groups is a major driver of phage evolution. Altogether, this study significantly expands the understanding of diversity and evolution of marine roseophages. Meanwhile, the analysis of these novel RCA phages and MAVGs highlights the critical role of recombination in shaping phage diversity. These phage sequences are valuable resources for inferring the evolutionary connection of distinct phage groups. IMPORTANCE Diversity and evolution of phages that infect the relatively slow-growing but dominant Roseobacter lineages are largely unknown. In this study, RCA phages CRP-9 and CRP-13 have been isolated on a Roseobacter RCA strain and shown to have a unique genomic architecture, which appears to be the result of a recombination event. CRP-9 and CRP-13 have a DNA replication module most similar to those in Cobavirus group phages and morphogenesis and packaging modules most similar to those in HMO-2011-type phages. HMO-2011-type morphogenesis and packaging modules are found in combination with distinct types of DNA replication genes, suggesting compatibility with various DNA replication modules. Altogether, this study contributes toward a better understanding of marine viral diversity and evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据