4.6 Article

Matrix Stiffness Contributes to Cancer Progression by Regulating Transcription Factors

期刊

CANCERS
卷 14, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/cancers14041049

关键词

cancer; stiffness; extracellular matrix; mechanotransduction; transcription factors; cancer associated fibroblasts; YAP; TAZ; collagen; contraction; crosslinking

类别

向作者/读者索取更多资源

Matrix stiffness is critical for cancer progression, regulated by transcription factors. Stiff extracellular matrices trigger mechanotransduction, influencing cancer and stromal cells. YAP/TAZ transcription factors respond to matrix stiffness and play a crucial role.
Simple Summary Matrix stiffness is recognized as a critical factor in cancer progression. Recent studies have shown that matrix stiffening is caused by the accumulation, contraction, and crosslinking of the extracellular matrix by cancer and stromal cells. Cancer and stromal cells respond to matrix stiffness, which determines the phenotypes of these cells. In addition, matrix stiffness activates and/or inactivates specific transcription factors in cancer and stromal cells to regulate cancer progression. In this review, we discuss the mechanisms of cancer stiffening and progression that are regulated by transcription factors responding to matrix stiffness. Matrix stiffness is critical for the progression of various types of cancers. In solid cancers such as mammary and pancreatic cancers, tumors often contain abnormally stiff tissues, mainly caused by stiff extracellular matrices due to accumulation, contraction, and crosslinking. Stiff extracellular matrices trigger mechanotransduction, the conversion of mechanical cues such as stiffness of the matrix to biochemical signaling in the cells, and as a result determine the cellular phenotypes of cancer and stromal cells in tumors. Transcription factors are key molecules for these processes, as they respond to matrix stiffness and are crucial for cellular behaviors. The Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) is one of the most studied transcription factors that is regulated by matrix stiffness. The YAP/TAZ are activated by a stiff matrix and promotes malignant phenotypes in cancer and stromal cells, including cancer-associated fibroblasts. In addition, other transcription factors such as beta-catenin and nuclear factor kappa B (NF-kappa B) also play key roles in mechanotransduction in cancer tissues. In this review, the mechanisms of stiffening cancer tissues are introduced, and the transcription factors regulated by matrix stiffness in cancer and stromal cells and their roles in cancer progression are shown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据