4.6 Article

Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment

期刊

ONCOIMMUNOLOGY
卷 11, 期 1, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/2162402X.2022.2026020

关键词

Galectin-3; Gal3; tumor microenvironment; immune modulatory vaccine

资金

  1. Danish Health Authority grant Empowering Cancer Immunotherapy in Denmark [4-1612-236/8]
  2. Copenhagen University Hospital Herlev and Gentofte
  3. Danish Council for Independent Research

向作者/读者索取更多资源

Galectin-3, expressed by various cells in the tumor microenvironment, is associated with tumor progression and metastasis. This study demonstrates that activating Gal3-specific T cells through immunomodulatory vaccination can target Gal3-producing cells and delay tumor growth.
Galectin-3 (Gal3) can be expressed by many cells in the tumor microenvironment (TME), including cancer cells, cancer-associated fibroblasts, tumor-associated macrophages, and regulatory T cells (Tregs). In addition to immunosuppression, Gal3 expression has been connected to malignant cell transformation, tumor progression, and metastasis. In the present study, we found spontaneous T-cell responses against Gal3-derived peptides in PBMCs from both healthy donors and cancer patients. We isolated and expanded these Gal3-specific T cells in vitro and showed that they could directly recognize target cells that expressed Gal3. Finally, therapeutic vaccination with a long Gal3-derived peptide epitope, which induced the expansion of Gal3-specific CD8(+) T cells in vivo, showed a significant tumor-growth delay in mice inoculated with EO771.LMB metastatic mammary tumor cells. This was associated with a significantly lower percentage of both Tregs and tumor-infiltrating Gal3(+) cells in the non-myeloid CD45(+)CD11b(-) compartment and with an alteration of the T-cell memory populations in the spleens of Gal3-vaccinated mice. These results suggest that by activating Gal3-specific T cells by an immune-modulatory vaccination, we can target Gal3-producing cells in the TME, and thereby induce a more immune permissive TME. This indicates that Gal3 could be a novel target for therapeutic cancer vaccines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据