4.6 Review

Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications

期刊

MATERIALS HORIZONS
卷 9, 期 5, 页码 1356-1386

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1mh01871j

关键词

-

资金

  1. National Natural Science Foundation of China [61801525]
  2. Guangdong Basic and Applied Basic Research Foundation [2020A1515010693]
  3. Science and Technology Program of Guangzhou [201904010456]

向作者/读者索取更多资源

Organohydrogels, formed by dispersing immiscible polymer networks or only hydrophilic polymer networks in organic/water solvent systems, have unique advantages such as anti-freezing, water retention, solvent resistance, adjustable surface wettability, and shape memory effect. They exhibit wide environmental adaptability and can be optimized for various functionalities. Organohydrogels find applications in flexible sensors, energy storage devices, nanogenerators, and biomedicine, indicating their unlimited potential for future development.
Multiple stretchable materials have been successively developed and applied to wearable devices, soft robotics, and tissue engineering. Organohydrogels are currently being widely studied and formed by dispersing immiscible hydrophilic/hydrophobic polymer networks or only hydrophilic polymer networks in an organic/water solvent system. In particular, they can not only inherit and carry forward the merits of hydrogels, but also have some unique advantageous features, such as anti-freezing and water retention abilities, solvent resistance, adjustable surface wettability, and shape memory effect, which are conducive to the wide environmental adaptability and intelligent applications. This review first summarizes the structure, preparation strategy, and unique advantages of the reported organohydrogels. Furthermore, organohydrogels can be optimized for electro-mechanical properties or endowed with various functionalities by adding or modifying various functional components owing to their modifiability. Correspondingly, different optimization strategies, mechanisms, and advanced developments are described in detail, mainly involving the mechanical properties, conductivity, adhesion, self-healing properties, and antibacterial properties of organohydrogels. Moreover, the applications of organohydrogels in flexible sensors, energy storage devices, nanogenerators, and biomedicine have been summarized, confirming their unlimited potential in future development. Finally, the existing challenges and future prospects of organohydrogels are provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据