4.8 Article

In-situ polymerized solid-state electrolytes with stable cycling for Li/ LiCoO2 batteries

期刊

NANO ENERGY
卷 91, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.106679

关键词

Solid-state lithium batteries; In-situ polymerization; Solid-state electrolytes; Interface; DFT calculation

资金

  1. National Key Technologies Research and Development Program [2019YFE0100200]
  2. National Natural Science Foundation of China [51802342]
  3. Beijing Municipal Science and Technology Commission [Z191100004719001]

向作者/读者索取更多资源

The study introduces a new type of liquid-state electrolyte for in-situ polymerization to enhance the performance of solid-state lithium batteries, with added substances improving the interfacial stability between the electrolyte and cathode.
Interfacial issues between solid-state electrolytes and electrodes are considered as one of key problems hindering the performance improvement of solid-state lithium batteries. In-situ polymerization is one of the most promising methods for improving interfacial performance, where liquid-state electrolytes are in-situ converted into solidstate electrolytes within the battery. It could effectively reduce interfacial resistance, meanwhile, it could enable compatibility of commercial production devices of Li-ion batteries. Here, a new kind of liquid-state electrolyte used for in-situ polymerization is designed based on previously reported high-temperature-resistant electrolyte. Small amounts of LiPF6 play dual roles in prevention of aluminum (Al) current collector corrosion and acceleration of in-situ polymerization of 1,3-dioxolane (DOL) solvent inside the cell at room temperature. Interfacial stability between in-situ polymerized electrolyte and LiCoO2 cathode is improved by the formation of interfacial layer with good stability during the electrochemical process, due to synergistic effects of added fluoroethylene carbonate (FEC) and hexamethylene diisocyanate (HDI) with the assistance of proton. Reaction mechanism between FEC and HDI is analyzed by DFT calculations. It shows good electrochemical performance in 4.2 V Li/LiCoO2 cell at room temperature. It provides the possibility of designing high-voltage solid-state lithium metal battery by in-situ polymerization and electrochemically interfacial engineering methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Conformal Coating of a High-Voltage Spinel to Stabilize LiCoO2 at 4.6 V

Mingwei Zan, Suting Weng, Haoyi Yang, Junyang Wang, Lufeng Yang, Sichen Jiao, Penghao Chen, Xuefeng Wang, Jie-Nan Zhang, Xiqian Yu, Hong Li

Summary: The demand for portable electronic devices has increased the need for higher energy density in layered LiCoO2 (LCO). However, its practical applications are hindered by the unstable surface structure and side reactions at high voltages (>4.5 V). In this study, a conformal and integral LiNixCoyMn2-x-yO4 spinel coating was designed on the surface of LCO using a sol-gel method, which improved cycle and rate performance and stabilized the cathode-electrolyte interface. The designed spinel coating layer was also well preserved after prolonged cycling, preventing the formation of an electrochemically inert Co3O4 phase and ensuring fast lithium transport kinetics.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Wide-Temperature, Long-Cycling, and High-Loading Pyrite All-Solid-State Batteries Enabled by Argyrodite Thioarsenate Superionic Conductor

Pushun Lu, Yu Xia, Yuli Huang, Zhendong Li, Yujing Wu, Xue Wang, Guochen Sun, Shaochen Shi, Zhengju Sha, Liquan Chen, Hong Li, Fan Wu

Summary: By coupling FeS2 with the superionic conductor LASI-80Si, an all-solid-state battery (ASSB) is proposed to overcome the challenges associated with rechargeable FeS2 batteries, enabling wide-temperature and large-capacity applications.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Spontaneous gas-solid reaction on sulfide electrolytes for high-performance all-solid-state batteries

Xiao Zhang, Xiaoyun Li, Suting Weng, Siyuan Wu, Qiuyan Liu, Mengyan Cao, Yejing Li, Zhenyu Wang, Lingyun Zhu, Ruijuan Xiao, Dong Su, Xiqian Yu, Hong Li, Liquan Chen, Zhaoxiang Wang, Xuefeng Wang

Summary: The problems of humidity sensitivity and instability to high-voltage oxide cathodes in sulfide electrolytes are solved by constructing a Li2CO3 interface, leading to enhanced electrochemical performance of all-solid-state batteries.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Chemistry, Physical

Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes

Chenxi Zu, Jiuming Li, Boran Cai, Jiliang Qiu, Yan Zhao, Qi Yang, Hong Li, Huigen Yu

Summary: This study develops separators with reactive metal oxide coatings to alleviate the formation of lithium dendrites and achieve dendrite-free lithium deposition and fast charging capability in lithium metal batteries. The use of reactive separator revolutionizes separator design and manufacturing for alkali metal batteries.

JOURNAL OF POWER SOURCES (2023)

Article Chemistry, Physical

Pulse High Temperature Sintering to Prepare Single-Crystal High Nickel Oxide Cathodes with Enhanced Electrochemical Performance

Hao Huang, Lipeng Zhang, Huayang Tian, Junqing Yan, Junfan Tong, Xiaohang Liu, Haoxuan Zhang, Heqin Huang, Shu-meng Hao, Jian Gao, Le Yu, Hong Li, Jieshan Qiu, Weidong Zhou

Summary: The currently dominant cathode material Li(NixCoyMnz)O-2(NCM, x + y + z = 1) in lithium-ion batteries exhibits higher energy density with increasing nickel content, but it also suffers from stronger interface reactions with the electrolyte and worse safety performance. Single crystal cathode materials have advantages such as fewer grain boundaries, higher density, and suppressed microcracks, leading to reduced interfacial side reactions and improved volumetric energy density and safety performance. In this study, a pulse high-temperature sintering (PHTS) strategy is reported to prepare single-crystal Li(Ni0.9Co0.05Mn0.05)O-2 (SC-NCM90), which shows enhanced tap density and thermal stability compared to spherical NCM90 particles.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Physical

High-capacity sulfide all-solid-state lithium battery with a conversion-type iron fluoride cathode

Xue Wang, Zhixuan Wang, Liquan Chen, Hong Li, Fan Wu

Summary: Reduced graphene oxide (rGO) sheets with uniformly anchored iron trifluoride (FeF3) composites are prepared by an in situ solvothermal approach, and combined with soft sulfide solid electrolytes to build sufficient electronic/ionic conductive pathways, leading to substantial improvements in the electrochemical performances of FeF3 cathodes. This research achieves unprecedented reversible capacities and excellent stability for FeF3 cathode, surpassing the state-of-the-art performance in various battery systems at a similar current density. It provides a novel strategy to overcome the limitations of transition metal fluorides and paves a new way for their practical applications in all-solid-state batteries.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Review Chemistry, Multidisciplinary

Ionic Conduction in Polymer-Based Solid Electrolytes

Zhuo Li, Jialong Fu, Xiaoyan Zhou, Siwei Gui, Lu Wei, Hui Yang, Hong Li, Xin Guo

Summary: Polymer-based solid electrolytes have shown great promise for next-generation batteries due to their good safety, high interfacial compatibility, low cost, and facile processability. However, a mechanistic understanding of the ionic conduction is still lacking, hindering the design and optimization of polymer-based solid electrolytes. This comprehensive review summarizes and evaluates the ionic conduction mechanisms and optimization strategies of various polymer-based solid electrolytes, highlighting challenges and strategies for enhancing the ionic conductivity.

ADVANCED SCIENCE (2023)

Article Chemistry, Physical

High-safety, wide-temperature-range, low-external-pressure and dendrite-free lithium battery with sulfide solid electrolyte

Jian Peng, Dengxu Wu, Pushun Lu, Zhixuan Wang, Yahao Du, Yanru Wu, Yujing Wu, Wenlin Yan, Jiacheng Wang, Hong Li, Liquan Chen, Fan Wu

Summary: This article introduces a new battery configuration that uses room-temperature liquid lithium solutions as anodes and argyrodite sulfide as solid electrolyte. This battery configuration has advantages such as high discharge capacity, efficiency, and cycle stability.

ENERGY STORAGE MATERIALS (2023)

Article Nanoscience & Nanotechnology

New Halide-Based Sodium-Ion Conductors Na3Y2Cl9 Inversely Designed by Building Block Construction

Jing Xu, Yuqi Wang, Siyuan Wu, Qifan Yang, Xiao Fu, Ruijuan Xiao, Hong Li

Summary: This study investigates the crystal structures of Na3YCl6 and proposes a three-step structure construction method using functional (Y2Cl9)3- groups as building blocks to obtain three new crystal structures in the composition of Na3Y2Cl9. The transport properties, thermostability, and electrochemical window of these structures are studied using first-principles calculation methods. The results show that the principle of designing crystal structures of halides by basic blocks is effective, and the P63-Na3Y2Cl9 structure exhibits outstanding transport properties due to the coherent diffusion connecting two directions. This research will promote the understanding of the transport mechanism in halide-based electrolytes and accelerate the inverse design of inorganic crystal structures based on functional building blocks and special stacking modes.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

An Intrinsically Nonflammable Electrolyte for Prominent-Safety Lithium Metal Batteries with High Energy Density and Cycling Stability

Zhicheng Wang, Ran Han, Haiyang Zhang, Dan Huang, Fengrui Zhang, Daosong Fu, Yang Liu, Yumeng Wei, Haiqi Song, Yanbin Shen, Jingjing Xu, Jieyun Zheng, Xiaodong Wu, Hong Li

Summary: A nonflammable electrolyte is developed for high-energy-density storage battery, which consists of 1 M lithium difluoro(oxalato)borate (LiDFOB) in triethyl phosphate (TEP) and N-methyl-N-propyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr(13)][TFSI] ionic liquid (IL) solvents. The unique solvation structure of the electrolyte induces stable anion-derived electrolyte/electrode interphases, inhibiting Li dendrite growth and side reactions between TEP and electrodes.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Physics, Multidisciplinary

A 700 W•h•kg-1 Rechargeable Pouch Type Lithium Battery

Quan Li, Yang Yang, Xiqian Yu, Hong Li

Summary: Researchers are pursuing high-energy-density rechargeable lithium batteries due to their revolutionary potential. We have manufactured practical pouch-type rechargeable lithium batteries with high gravimetric and volumetric energy densities, achieved through the use of high-performance battery materials and advanced process technologies.

CHINESE PHYSICS LETTERS (2023)

Article Energy & Fuels

The Effects of γ-Radiation on the Physical and Electrical Properties of Silicone Encapsulation for Electronic Power Conditioners

Cong Hu, Wei Zheng, Bin Zhao, Yu Fan, Hong Li, Kun Zheng, Gang Wang

Summary: A comprehensive evaluation methodology is proposed for silicone-based potted modules to assess their physical and electrical properties as well as the influence of gamma-radiation on the encapsulated interface. The results show that gamma-radiation increases the crosslinking density, hardness, elastic modulus, volume resistivity, dielectric constant, and storage modulus, while decreasing the elongation at break and dielectric loss factor. The tensile strength, breakdown strength, and coefficient of thermal expansion of the interface exhibit complex trends. The partial discharge inception voltage slightly increases due to the unchanged interface bonding state and slightly decreased electric field strength at the tip.

ENERGIES (2023)

Article Chemistry, Physical

The Roles of Ni and Mn in the Thermal Stability of Lithium-Rich Manganese-Rich Oxide Cathode

Hongyi Pan, Sichen Jiao, Zhichen Xue, Jin Zhang, Xilin Xu, Luyu Gan, Quan Li, Yijin Liu, Xiqian Yu, Hong Li, Liquan Chen, Xuejie Huang

Summary: The pursuit of high-energy-density lithium-ion batteries has led to extensive research on the high-capacity lithium-rich manganese-rich oxide cathode (LRMO). This study investigates the thermal stability of LRMO through in situ X-ray diffraction and full-field transmission X-ray microscopy combined with X-ray absorption near edge structure. The roles of Ni and Mn in affecting the thermal stability of LRMO are uncovered, with Ni acting as a key factor that governs the onset temperature of thermal decomposition. Moreover, incomplete coverage of solid polymer electrolytes over the LRMO particle surface may lead to the deterioration of thermal stability.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Physical

Fast charge storage kinetics by surface engineering for Ni-rich layered oxide cathodes

Jiacheng Wang, Zhenyu Zhang, Weitao He, Zhixuan Wang, Suting Weng, Quan Li, Xuefeng Wang, Suelen Barg, Liquan Chen, Hong Li, Fan Wu

Summary: Controlled water treatment was used to modify the surface structure and chemical environment of a Ni-rich layered oxide cathode, leading to improved Li transport kinetics and enhanced electrochemical performances.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Localized-domains staging structure and evolution in lithiated graphite

Suting Weng, Siyuan Wu, Zepeng Liu, Gaojing Yang, Xiaozhi Liu, Xiao Zhang, Chu Zhang, Qiuyan Liu, Yao Huang, Yejing Li, Mehmet N. Ates, Dong Su, Lin Gu, Hong Li, Liquan Chen, Ruijuan Xiao, Zhaoxiang Wang, Xuefeng Wang

Summary: In this study, the staging structure and evolution of lithium-intercalated graphite were revealed at the nanoscale using cryogenic-transmission electron microscopy and other methods. The intercalated lithium ions were found to distribute unevenly, leading to local stress and dislocations in the graphite structure. Each staging compound exhibited macroscopic order but microscopic inhomogeneity, revealing a localized-domains structural model.

CARBON ENERGY (2023)

Article Chemistry, Physical

Gamma glycine enhances efficiency of organic hybrid piezoelectric-triboelectric nanogenerators

Sirinya Ukasi, Paritta Jutapukti, Chiranicha Ninthub, Nattapong Pinpru, Phakkhananan Pakawanit, Wanwilai Vittayakorn, Satana Pongampai, Naratip Vittayakorn, Thitirat Charoonsuk

Summary: This study explores the enhancement of electrical output of flexible hybrid piezoelectric-triboelectric nanogenerators by incorporating gamma-glycine into fully organic composites. The research demonstrates the importance of optimized concentrations of gamma-glycine and chitosan in achieving superior performance. The study identifies the critical content of gamma-glycine that leads to the highest output signal, and provides theoretical explanations for this observation.

NANO ENERGY (2024)

Article Chemistry, Physical

Portable triboelectric-electromagnetic hybrid biomechanical energy harvester for driving various functional light-emitting diodes with a wide range of wavelengths

Yoonsang Ra, Yu-seop Kim, Seonmo Yang, Namgyu Kang, Gyuwon Oh, Chungyeon Cho, Sangmin Lee, Dongwhi Choi

Summary: In this study, a portable energy harvester (STEP) was proposed to drive various functional LEDs using biomechanical energy. The roles and functionalities of a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in the hybrid energy harvester were experimentally demonstrated, and the necessity of hybridization for LED-involved devices was described. The STEP showed promising potential as an effective energy supply strategy for various functional LEDs in related industries.

NANO ENERGY (2024)

Article Chemistry, Physical

Flexoelectrically augmented triboelectrification enabled self-power wireless smart home control system

Dae Sol Kong, Kyung Hoon Kim, Ying Chieh Hu, Jong Hun Kim, Inseo Kim, Jeongwan Lee, Joonhyuk Lee, Won Hyuk Shon, Hanjin Yoo, Chul-Un Ro, Seungsu Lee, Hyoungjeen Jeen, Minbaek Lee, Minseok Choi, Jong Hoon Jung

Summary: With the rapid development of the Internet of Things and artificial intelligence, smart home has emerged to fulfill the security, convenience, and energy-saving issues of modern life. A flexoelectric mica crystal is used to augment the finger touch-driven triboelectric output for operating a wireless and multichannel smart home controller. This work provides important ingredients for enhancing triboelectric output and realizing a convenient, multifunctional, cost-effective, and adaptable smart home control system without batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Enhance vortices vibration with Y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester

Yi Han, Fang Wu, Xiaozhen Du, Zihao Li, Haixiang Chen, Dongxing Guo, Junlei Wang, Hong Yu

Summary: This paper presents a novel type of triboelectric nanogenerator that utilizes wind energy, with a Y-type bluff body to enhance vibration and output power. The application of this generator successfully provides power for a wireless temperature and humidity sensor.

NANO ENERGY (2024)

Article Chemistry, Physical

Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2

Wen Zhang, Fangyuan Cheng, Miao Chang, Yue Xu, Yuyu Li, Shixiong Sun, Liang Wang, Leimin Xu, Qing Li, Chun Fang, Meng Wang, Yuhao Lu, Jiantao Han, Yunhui Huang

Summary: This study successfully induced the formation of a uniform and robust CEI by constructing ZrO2 nano-rivets on the surface of LCO, stabilizing the surface of high-voltage LCO and facilitating lithium-ion diffusion.

NANO ENERGY (2024)

Article Chemistry, Physical

Asperity shape in flexoelectric/triboelectric contacts

Karl P. Olson, Laurence D. Marks

Summary: This paper investigates the role of contacting shapes in triboelectricity and provides scaling rules for designing energy harvesting devices.

NANO ENERGY (2024)

Article Chemistry, Physical

Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting

Jong-An Choi, Jingu Jeong, Mingyu Kang, Hee-Jin Ko, Taehoon Kim, Keun Park, Jongbaeg Kim, Soonjae Pyo

Summary: Wind-driven triboelectric nanogenerators (WTENGs) are a promising emerging technology for sustainable wind energy harvesting, offering high output performance, lightweight design, and compact dimensions. This study introduces an innovative WTENG design that leverages a rolling-based mechanism to achieve efficient omnidirectional wind energy harvesting.

NANO ENERGY (2024)

Article Chemistry, Physical

Flag-type hybrid nanogenerator utilizing flapping wakes for consistent high performance over an ultra-broad wind speed range

Liwei Dong, Qian Tang, Chaoyang Zhao, Guobiao Hu, Shuai Qu, Zicheng Liu, Yaowen Yang

Summary: This paper proposes a novel hybrid scheme for flag-type nanogenerators (FNGs) that enhances their performance and broadens their operational wind speed ranges by harnessing the synergistic potential of two aerodynamic behaviors. The proposed flag-type triboelectric-piezoelectric hybrid nanogenerator (FTPNG) integrates flapping piezoelectric flags (PEFs) and a fluttering triboelectric flag (TEF). The FTPNG achieves significant power generation and a broad wind speed range, surpassing other FNGs, making it suitable for various self-powered systems and Internet of Things applications.

NANO ENERGY (2024)

Review Chemistry, Physical

Marine biomaterial-based triboelectric nanogenerators: Insights and applications

Yunmeng Li, Xin Liu, Zewei Ren, Jianjun Luo, Chi Zhang, Changyong (Chase) Cao, Hua Yuan, Yaokun Pang

Summary: The demand for green and eco-friendly materials is growing due to increasing environmental concerns related to traditional petroleum-based products. Marine biomaterials have emerged as a promising alternative, thanks to their abundant availability, biocompatibility, biodegradability, and low toxicity. In this review, we discuss the development and applications of triboelectric nanogenerators (TENGs) based on marine biomaterials. The operational modes, foundational principles, intrinsic qualities, and advantages of marine biomaterials commonly used in TENG designs are highlighted. Approaches to enhance the efficacy of TENGs derived from marine biomaterials are also discussed, along with documented applications from existing literature. Furthermore, the existing challenges and future directions in marine biomaterial-inspired TENGs are explored.

NANO ENERGY (2024)

Article Chemistry, Physical

Pathway to high performance, low temperature thin-film solid oxide cells grown on porous anodised aluminium oxide

Matthew P. Wells, Adam J. Lovett, Yizhi Zhang, Zhongxia Shang, Kosova Kreka, Babak Bakhit, Haiyan Wang, Albert Tarancon, Judith L. MacManus-Driscoll

Summary: Reversible solid oxide cells (rSOCs) offer a promising solution to efficient energy conversion, but have been limited in portable power and electrolysis applications due to excessive polarisation resistance of the oxygen electrode at low temperatures. This study demonstrates the growth of symmetric and complete rSOC structures with reduced polarisation resistance by tuning oxygen vacancy through annealing, providing a promising route towards high-performance rSOC devices for portable power applications.

NANO ENERGY (2024)

Article Chemistry, Physical

Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode

Kangkang Bao, Minghui Wang, Yue Zheng, Panpan Wang, Liwen Yang, Yang Jin, Hui Wu, Bin Sun

Summary: This study utilizes ethanol as an electrolyte additive to modulate the migration of zinc ions and the surface structure of zinc anodes, resulting in improved capacity retention and cycle life of zinc-based aqueous batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Ultrathin nanolayer constituted by a natural polysaccharide achieves egg-box structured SnO2 nanoparticles toward efficient and stable perovskite solar cells

Haichao Yang, Wensi Cai, Ming Wang, Saif M. H. Qaid, Zhiyuan Xu, Huaxin Wang

Summary: The introduction of sodium alginate (SA) into perovskite solar cells improves the carrier dynamics, stability, and performance by inhibiting nonradiative recombination and retarded charge dynamics.

NANO ENERGY (2024)

Article Chemistry, Physical

All-in-one multifunctional and deformation-insensitive carbon nanotube nerve patches enabling on-demand interactions

Cuirong Zhang, Mingyuan Wei, Zihan Chen, Wansheng Lin, Shifan Yu, Yijing Xu, Chao Wei, Jinwei Zhang, Ziquan Guo, Yuanjin Zheng, Qingliang Liao, Xinqin Liao, Zhong Chen

Summary: Artificial Intelligence of Things (AIoT) aims to establish smart and informative interactions between humans and devices. However, common pixelated sensing arrays in AIoT applications present problems such as hard and brittle devices, complex structures, and low precision. This article introduces an innovative solution called the all-in-one intelligent semitransparent interactive nerve patch (AISI nerve patch), which integrates sensing, recognition, and transmission functionalities into a thin and flexible patch. The AISI nerve patch is semitransparent, allowing for accurate identification without affecting aesthetics, and it can be attached to any curved surface for intelligent and interactive applications. With rapid response time and high precision recognition, it enables the integration of artificial intelligence and achieves high recognition accuracy for further development of AIoT.

NANO ENERGY (2024)

Article Chemistry, Physical

Engineering anion defects of ternary V-S-Se layered cathodes for ultrafast zinc ion storage

Youcun Bai, Heng Zhang, Huijun Song, Chong Zhu, Lijin Yan, Qin Hu, Chang Ming Li

Summary: A novel stainless-steel supported lattice-mismatched V-S-Se layered compound with high selenium vacancy was synthesized by adjusting the molar ratio of sulfur to selenium. The introduction of selenium vacancies created additional redox peaks of sulfur, providing more mass transport channels and active sites for zinc ions. The specific capacity and cycle stability of the electrode were significantly improved, demonstrating great potential for practical applications and providing insights into the effects of defects on battery performance.

NANO ENERGY (2024)

Article Chemistry, Physical

Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+doped gallate compound

Yao Xiao, Puxian Xiong, Yakun Le, Zhenjie Lun, Kang Chen, Zhiduo Wang, Peishan Shao, Zhicong Chen, Dongdan Chen, Zhongmin Yang

Summary: This study successfully synthesized a material with multi-stimulus-responsive luminescence and confirmed the internal relationship between luminescence and defects by regulating the distribution and depth of defects. The dynamic process of multi-stimulus-responsive luminescence was validated by experimental and calculation results.

NANO ENERGY (2024)