4.5 Article

Astragaloside positively regulated osteogenic differentiation of pre-osteoblast MC3T3-E1 through PI3K/Akt signaling pathway

期刊

出版社

BMC
DOI: 10.1186/s13018-021-02690-1

关键词

Astragaloside; PI3K; Akt pathway; Osteoporosis

向作者/读者索取更多资源

This study confirmed that Astragaloside can promote osteogenic differentiation of MC3T3-E1 cells, possibly through regulating the PI3K/Akt signaling pathway.
Background Osteoporosis is a widespread chronic disease characterized by low bone density. There is currently no gold standard treatment for osteoporosis. The aim of this study was to explore the role and mechanism of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. Methods MC3T3-E1 cells were divided into control and different dose of Astragaloside (10, 20, 40, 50, and 60 mu g/ml). Then, ALP and ARS staining were performed to identify the effects of Astragaloside for early and late osteogenic capacity of MC3T3-E1 cells, respectively. Real-time PCR and western blot were performed to assess the ALP, OCN, and OSX expression. PI3K/Akt signaling pathway molecules were then assessed by Western blot. Finally, PI3K inhibitor, LY294002, was implemented to assess the mechanism of Astragaloside in promoting osteogenic differentiation of MC3T3-E1 cells. Results Astragaloside significantly increased the cell viability than the control group. Moreover, Astragaloside enhanced the ALP activity and calcium deposition than the control groups. Compared with the control group, Astragaloside increased the ALP, OCN, and OSX expression in a dose-response manner. Western blot assay further confirmed the real-time PCR results. Astragaloside could significantly increase the p-PI3K and p-Akt expression than the control group. LY294002 partially reversed the promotion effects of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. LY294002 partially reversed the promotion effects of Astragaloside on ALP, OCN, and OSX of MC3T3-E1 cells. Conclusion The present study suggested that Astragaloside promoted osteogenic differentiation of MC3T3-E1 cells through regulating PI3K/Akt signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据