4.7 Article

Radiation effects on 3D rotating flow of Cu-water nanoliquid with viscous heating and prescribed heat flux using modified Buongiorno model

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-00107-x

关键词

-

向作者/读者索取更多资源

This article investigates the three-dimensional flow and heat transport of viscous dissipating Cu-H2O nanoliquid over an elongated plate in a rotating frame of reference using the modified Buongiorno model. The study reveals the significant improvement in the temperature of the base liquid due to the presence of copper nanoparticles, and the enhancement of the thermal boundary layer structure and reduction in momentum layer thickness with rotation. Additionally, the results show that temperature is enhanced by thermal radiation, and the haphazard motion of nanoparticles affects the nanoparticle volume fraction layer thickness.
In this article, the three-dimensional (3D) flow and heat transport of viscous dissipating Cu-H2O nanoliquid over an elongated plate in a rotating frame of reference is studied by considering the modified Buongiorno model. The mechanisms of haphazard motion and thermo-migration of nanoparticles along with effective nanoliquid properties are comprised in the modified Buongiorno model (MBM). The Rosseland radiative heat flux and prescribed heat flux at the boundary are accounted. The governing nonlinear problem subjected to Prandtl's boundary layer approximation is solved numerically. The consequence of dimensionless parameters on the velocities, temperature, and nanoparticles volume fraction profiles is analyzed via graphical representations. The temperature of the base liquid is improved significantly owing to the existence of copper nanoparticles in it. The phenomenon of rotation improves the structure of the thermal boundary layer, while, the momentum layer thickness gets reduced. The thermal layer structure gets enhanced due to the Brownian movement and thermo-migration of nanoparticles. Moreover, it is shown that temperature enhances owing to the presence of thermal radiation. In addition, it is revealed that the haphazard motion of nanoparticles decays the nanoparticle volume fraction layer thickness. Also, the skin friction coefficients found to have a similar trend for larger values of rotation parameter. Furthermore, the results of the single-phase nanoliquid model are limiting the case of this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据