4.6 Article

Formation and Dissociation of CH4 and CO2 Hydrates in Presence of a Sediment Composed by Pure Quartz Mixed with Ti23 Particles

期刊

MATERIALS
卷 15, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/ma15041470

关键词

gas hydrates; carbon dioxide storage; solid additives; kinetic promoters

向作者/读者索取更多资源

The research investigates the formation and dissociation of methane and carbon dioxide hydrates in a confined environment, along with the presence of Ti23 particles in a porous quartz sediment. It was found that Ti23 can act as a kinetic promoter for the dissociation process of the hydrates, with a higher concentration leading to a more significant effect.
The present research deals with the formation and dissociation of methane and carbon dioxide hydrates in a confined environment (small-size reactor) and in presence of a porous sediment of pure quartz impregnated with Ti23 particles. This research is part of a wider study aimed at verifying the possibility to use metallic powders, produced via gas-atomization for applications in additive manufacturing, as additives during the production/dissociation of gas hydrates. The porous medium was used to ensure the presence of Ti23 particles in the whole volume and not only in the lowest portion of the internal volume. For both the guest compounds considered, two Ti23 concentrations were explored, respectively, 8.68 and 26.04 wt%. Under the thermodynamic point of view, the dissociation process well approximated the phase equilibrium (defined with values collected from literature) for both compounds. In addition, the amount of gas trapped into hydrates, evaluated as a function of the initial amount of gas inserted inside the reactor, did not show relevant changes. Conversely, the presence of Ti23 was found to reduce the induction time for both components, thus allowing to define it as a kinetic promoter for the process. Such tendency was found to increase with the concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据