4.8 Article

Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-28428-z

关键词

-

资金

  1. FRISBI [ANR-10-INSB-05-02]
  2. GRAL within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS [ANR-17-EURE-0003]
  3. Auvergne-Rhone-Alpes Region
  4. Fondation pour la Recherche Medicale (FRM)
  5. fonds FEDER
  6. GIS-Infrastructures en Biologie Sante et Agronomie (IBiSA)
  7. Horizon 2020 program of the European Commission [871037]
  8. Institut Universitaire de France endowment
  9. FRM grant [FDT202012010396]
  10. [ANR-19-CE11-0024-02]

向作者/读者索取更多资源

This study elucidates the structure and mechanisms of action of the La Crosse virus polymerase through cryo-electron microscopy, providing valuable insights for the future design of antiviral drugs against this virus.
La Crosse is a human life threatening virus belonging to the Bunyavirales order. The structure of its polymerase solved in seven key active states by cryo-electron microscopy reveals the molecular mechanisms of viral RNA replication and transcription. Segmented negative-strand RNA bunyaviruses encode a multi-functional polymerase that performs genome replication and transcription. Here, we establish conditions for in vitro activity of La Crosse virus polymerase and visualize its conformational dynamics by cryo-electron microscopy, unveiling the precise molecular mechanics underlying its essential activities. We find that replication initiation is coupled to distal duplex promoter formation, endonuclease movement, prime-and-realign loop extension and closure of the polymerase core that direct the template towards the active site. Transcription initiation depends on C-terminal region closure and endonuclease movements that prompt primer cleavage prior to primer entry in the active site. Product realignment after priming, observed in replication and transcription, is triggered by the prime-and-realign loop. Switch to elongation results in polymerase reorganization and core region opening to facilitate template-product duplex formation in the active site cavity. The uncovered detailed mechanics should be helpful for the future design of antivirals counteracting bunyaviral life threatening pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据