4.8 Article

Manipulation and control of droplets on surfaces in a homogeneous electric field

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-27879-0

关键词

-

资金

  1. German Research Foundation (DFG)

向作者/读者索取更多资源

The authors demonstrate a method for controlling droplet coalescence by inducing dipoles inside droplets using an external electric field. The repulsive dipole force efficiently suppresses droplet coalescence on a liquid-infused surface, allowing for the manipulation and control of droplets. These findings reveal the dependence of the repulsion force on droplet volumes, distance between droplets, and electric field strength.
Control of droplet coalescence is a major challenge of droplet microfluidics. Here, the authors show that homogenous external electric field can induce dipoles inside droplets, which can be used to withdraw samples from an array of droplets. A method to manipulate and control droplets on a surface is presented. The method is based on inducing electric dipoles inside the droplets using a homogeneous external electric field. It is shown that the repulsive dipole force efficiently suppresses the coalescence of droplets moving on a liquid-infused surface (LIS). Using a combination of experiments, numerical computations and semi-analytical models, the dependence of the repulsion force on the droplet volumes, the distance between the droplets and the electric field strength is revealed. The method allows to suppress coalescence in complex multi-droplet flows and is real-time adaptive. When the electric field strength exceeds a critical value, tip streaming from the droplets sets in. Based on that, it becomes possible to withdraw minute samples from an array of droplets in a parallel process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据