4.8 Article

Intermediate accumulation and toxicity reduction during the selective photoelectrochemical process of atrazine in complex water bodies

期刊

WATER RESEARCH
卷 205, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117663

关键词

Selective removal; Atrazine; Photoelectrocatalysis; Intermediates; Toxicity reduction

资金

  1. National Natural Science Foundation of China (NSFC) [22076140, 21876128, 21537003]

向作者/读者索取更多资源

Selective removal of atrazine in wastewater was achieved by designing a new photoanode with strong catalytic and selective ability. The specific recognition mechanism relied on the formation of halogen bond and hydrogen bond, as well as the shape and size recognition. The correlation between intermediate degradation and toxicity was explored, showing that nearly 100% removal of aquatic toxicity and cytotoxicity can be achieved by removing highly toxic intermediates and accumulating non-toxic final product cyanuric acid.
Selective removal of atrazine (ATZ) in wastewater and clarification of the degradation intermediate-toxicity correlation are of great importance. A newly molecularly imprinted, {001} facets-exposed TiO2 (MI-TiO2,001) photoanode with strong catalytic and selective ability was designed. ATZ was selectively removed from pesticide wastewater, reaching 1.9 mu g L-1, approximately 1/10 of the concentration achieved with nonselective treatment. This selective removal originated from the preferential adsorption and enrichment of ATZ onto MI-TiO2,001. The highly specific recognition relied on the halogen bond and strong hydrogen bond formed between the Cl atom and triazine ring pi orbital of ATZ and the surface -OH group of MI-TiO2,001 as well as the recognition of MITiO2,001 to the shape and size of ATZ. The specific interaction leads to different accumulations of intermediates. The correlation of intermediate and toxicity was also discussed. Aquatic toxicity was rapidly reduced through the direct dealkylation path, and due to the accumulation of highly toxic 2-hydroxy-4-ethylamino-6-isopropylaminos-triazine, there will be transient fluctuations via the dechlorination-hydroxylation path first. The final product was identified as nearly nontoxic cyanuric acid, the selective accumulation of which indicated that there was almost 100% removal of aquatic toxicity and cytotoxicity with only 9.8% removal of total organic carbon. This work provides new insight into the correlation of pollutant degradation intermediates and changes in toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Application of carbon aerogel electrosorption for enhanced Bi2WO6 photoelectrocatalysis and elimination of trace nonylphenol

Zhiyong Fan, Huijie Shi, Hongying Zhao, Junzhuo Cai, Guohua Zhao

CARBON (2018)

Article Engineering, Environmental

Novel Electrochemical Pretreatment for Preferential Removal of Nonylphenol in Industrial Wastewater: Biodegradability Improvement and Toxicity Reduction

Baoling Niu, Junzhuo Cai, Wenjing Song, Guohua Zhao

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2020)

Review Engineering, Environmental

Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices

Junzhuo Cai, Baoling Niu, Qihao Xie, Ning Lu, Shuyu Huang, Guohua Zhao, Jincai Zhao

Summary: This critical review focuses on the overall strategies for accurately removing highly toxic emerging pollutants in the presence of typical interferents. The main difficulties hindering the improvement of selectivity in complex matrices are analyzed, implying that it is difficult to adopt a universal approach for multiple targets and water substrates. Selective methods based on assorted principles are proposed aiming to improve the anti-interference ability.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2022)

Article Nanoscience & Nanotechnology

Dual Superlyophobic Materials for Under-Liquid Microfluid Manipulation, Immiscible Solvent Separation, and CO2 Blockage

Chang-Lian Xu, Yitong Luo, Siyu Liu, Guiyin Wang, Chao Chen, Guochun Lv, Zhang Cheng, Zhanbiao Yang, Xiaoxun Xu, Junzhuo Cai, Xiaohong Zhang, Gang Yang, Jun Wu, Shirong Zhang

Summary: This study developed a simple and environmentally friendly method to prepare specific dual superlyophobic materials to solve the problems of oily water purification, immiscible solvent separation, sensitive microreaction, and CO2 blockage. These materials can maintain their dual superoleophobicity in various oil/water systems without additional surface modifications. They can achieve separation efficiencies greater than 99.50% for oil/water mixtures even after 40 separation cycles, and over 99.25% for immiscible organic solvents after 20 cycles. The materials have also been successfully applied to separate meal waste oily water, crude oil/water, manipulate and block CO2 bubbles, and serve as a platform for microdrop manipulation/microreaction under liquid.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Engineering, Environmental

Preferential removal of phthalic esters by photocatalysis on selective TiO2

Ning Lu, Junzhuo Cai, Baoling Niu, Ye Zhou, Guohua Zhao

Summary: It is important to give traditional photocatalysis selectivity for a class of characteristic pollutants in environmental science. Using PAEs-TiO2 as a selective photocatalyst, 302.5 μg/L of 11 phthalic esters (PAEs) were preferentially removed to 4.94 μg/L in the presence of 10 mg/L of natural organic matter via specific hydrogen bonds or cation-pi interactions. The study provides new insights into the selective photocatalysis of pollutants with similar molecular structure.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Environmental Sciences

Controllable Generation of Sulfate and Hydroxyl Radicals to Efficiently Degrade Perfluorooctanoic Acid in Cathode-Dominated Electrochemical Process

Qiuxia Lei, Mingyue Liu, Tian Yang, Min Chen, Lin Qian, Shun Mao, Junzhuo Cai, Hongying Zhao

Summary: A cathode-mediated electrochemical process was proposed for efficiently removing PFOA by in situ generation of SO4·- and HO·. The optimized ratio of SO4·- and HO· resulted in high PFOA removal and mineralization efficiency.

ACS ES&T WATER (2023)

Article Engineering, Environmental

Perspective on Photoelectrocatalytic Removal of Refractory Organic Pollutants in Water Systems

Zhiming Wang, Shaohan Xu, Junzhuo Cai, Jianjun Ma, Guohua Zhao

Summary: This paper discusses the application of photoelectrocatalysis technology and engineering in the removal of toxic organic pollutants in water systems. By analyzing the advantages of PEC, the principles and features of PEC systems are clarified, and various applications of PEC technology are further developed and discussed. The importance of PEC oxidation and toxicity studies is emphasized, and challenges and perspectives for the development of PEC techniques are proposed.

ACS ES&T ENGINEERING (2022)

Article Engineering, Environmental

Parabens and their metabolite in a marine benthic-dominated food web from the Beibu gulf, South China Sea: Occurrence, trophic transfer and health risk assessment

Rong-Gui Zhu, Chang-Gui Pan, Feng-Jiao Peng, Chao-Yang Zhou, Jun-Jie Hu, Kefu Yu

Summary: This comprehensive survey investigated the occurrence, bioaccumulation, and trophic magnification of parabens and their metabolite 4-HB in a marine food web. Results showed that parabens were the predominant pollutants in marine organisms, with significant bioaccumulation from sediments. The estimated trophic magnification factor indicated biomagnification for MeP and trophic dilution for 4-HB. Overall, the risks for humans consuming marine organisms were found to be low.

WATER RESEARCH (2024)

Article Engineering, Environmental

Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems

Andres F. Torres-Franco, Deborah Leroy-Freitas, Cristina Martinez-Fraile, Elisa Rodriguez, Pedro A. Garcia-Encina, Raul Munoz

Summary: Anaerobic and microalgae-based technologies have emerged as sustainable alternatives for municipal wastewater treatment. However, the presence of viruses in the treated wastewater is a major concern for reuse applications. This study assessed the ability of these technologies to reduce viruses during secondary wastewater treatment. The results showed that all technologies were effective in reducing the concentration of viruses, with microalgae-based treatment exhibiting the highest potential for reducing the disinfection requirements of treated wastewater.

WATER RESEARCH (2024)

Article Engineering, Environmental

Reconsidering mercury sources and exposure pathways to bivalves: Insights from mercury stable isotopes

Young Gwang Kim, Sae Yun Kwon, Spencer J. Washburn, Scott C. Brooks, Ji Won Yoon, Lucien Besnard

Summary: The study uses Hg isotope ratios to identify the sources and exposure pathways of mercury in bivalves, finding that dissolved Hg phases in the water column are the primary source and exposure pathway to bivalves. This provides new insights into using bivalves as bioindicators for sediment quality monitoring.

WATER RESEARCH (2024)

Article Engineering, Environmental

Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane

Hui Geng, Ying Xu, Rui Liu, Dianhai Yang, Xiaohu Dai

Summary: This study investigates the effect of cation exchange resin (CER) on the sequential recovery of hydrogen and methane from anaerobic digestion (AD) and the corresponding mechanisms. The results show that CER can simultaneously enhance the production of hydrogen and methane by promoting the solubilisation, hydrolysis, and acidification of organic matter. Additionally, CER facilitates effective contact between bacteria and organic particulates and reduces the energy barrier for mass transfer during methane production. The study also reveals changes in the microbial community structure and metagenomics during the AD process.

WATER RESEARCH (2024)

Article Engineering, Environmental

Fertilizer recovery from source-separated urine by evaporation with a combined process of dehumidification and the addition of absorbent resin supplement

Xiaojing Lin, Zhan Jin, Shunfeng Jiang, Zhiquan Wang, Suqing Wu, Ke Bei, Min Zhao, Xiangyong Zheng

Summary: Dehumidification combined with addition of absorbent resin supplement (ARS) was used to achieve rapid evaporation of non-pretreated urine, resulting in high water evaporation efficiency and nutrient recovery.

WATER RESEARCH (2024)

Article Engineering, Environmental

Influences of hydrodynamics on microbial community assembly and organic carbon composition of resuspended sediments in shallow marginal seas

Yangli Che, Chaoran Lin, Shen Li, Jiao Liu, Longhai Zhu, Shilei Yu, Nan Wang, Haoshuai Li, Mutai Bao, Yang Zhou, Tonghao Si, Rui Bao

Summary: Hydrodynamic processes play a crucial role in the transmission of sediments, microbial assembly, and organic carbon redistribution in the ocean. Through experiments and analysis, we found that hydrodynamics shape the assembly of microbial communities and control the redistribution of different sourced organic carbon, thereby influencing microbial-mediated biogeochemical transformation.

WATER RESEARCH (2024)

Article Engineering, Environmental

A comprehensive evaluation of the temporal and spatial fouling characteristics of RO membranes in a full-scale seawater desalination plant

Chao Chen, Yu Yang, Nigel J. D. Graham, Zhenyu Li, Xingtao Yang, Zhining Wang, Nadia Farhat, Johannes S. Vrouwenvelder, Li -an Hou

Summary: The fouling of seawater reverse osmosis membranes is a persistent challenge in desalination. This study monitored the operational performance of a desalination plant for 7 years and the fouling development in different areas of membrane modules. The findings showed that operational performance declined over time and fouling mainly occurred at the feed side of the modules, with the highest microbial diversity. Keystone species like Chloroflexi and Planctomycetes played an important role in maintaining community structure and biofilm maturation. Polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic substances contributed to fouling. Overall, biofouling had a significant impact on membrane fouling after 7 years of operation.

WATER RESEARCH (2024)

Article Engineering, Environmental

Fluctuating redox conditions accelerate the electron storage and transfer in magnetite and production of dark hydroxyl radicals

Dan Li, Jieyi Sun, Yibo Fu, Wentao Hong, Heli Wang, Qian Yang, Junhong Wu, Sen Yang, Jianhui Xu, Yunfei Zhang, Yirong Deng, Yin Zhong, Ping'an Peng

Summary: Sulfidation-oxidation treatment of magnetite (Fe3O4) enhances the production of dark center dot OH, which can efficiently degrade dissolved organic matter (DOM) and accelerate carbon cycling.

WATER RESEARCH (2024)

Article Engineering, Environmental

Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge: Implementing microaerobic-aerobic configuration with internal separators

Cheng Yu, Kaijun Wang, Kaiyuan Zhang, Ruiyang Liu, Pingping Zheng

Summary: This study implemented a microaerobic-aerobic configuration in a full-scale municipal wastewater treatment facility and investigated the effects on sludge characteristics, pollutant removal, microbial community, and granulation mechanisms. The results showed successful transition from flocculent-activated sludge to well-defined AGS after two months of operation. The primary pathways for pollutant removal were simultaneous nitrification, denitrification, and phosphorus removal. Moreover, the incorporation of internal separators induced shifts in the flow pattern, which promoted granulation.

WATER RESEARCH (2024)

Article Engineering, Environmental

Target analysis, occurrence and cytotoxicity of halogenated polyhydroxyphenols as emerging disinfection byproducts in drinking water

Zhe Zhang, Shaoyang Hu, Guangrong Sun, Wei Wang

Summary: Halogenated aromatic disinfection byproducts (DBPs), such as halogenated phenols, have garnered widespread attention due to their high toxicity and prevalence. This study reports on the analysis, occurrence, and cytotoxicity of a group of emerging halogenated aromatic DBPs, known as halogenated polyhydroxyphenols (HPPs), in drinking water.

WATER RESEARCH (2024)

Article Engineering, Environmental

A coupled model to improve river water quality prediction towards addressing non-stationarity and data limitation

Shengyue Chen, Jinliang Huang, Peng Wang, Xi Tang, Zhenyu Zhang

Summary: Accurate prediction of river water quality is crucial for sustainable water management. This study introduces wavelet analysis and transfer learning techniques to assist LSTM modeling, proposing a newly coupled modeling approach that improves short-term prediction of river water quality.

WATER RESEARCH (2024)

Article Engineering, Environmental

Deciphering anaerobic ethanol metabolic pathways shaped by operational modes

Bang Du, Xinmin Zhan, Piet N. L. Lens, Yifeng Zhang, Guangxue Wu

Summary: Efficient anaerobic digestion relies on the cooperation of different microorganisms with different metabolic pathways. This study investigated the effects of different operational modes and the addition of powdered activated carbon (PAC) on ethanol metabolic pathways. The results showed that the SBR mode and the presence of CO2 facilitated ethanol metabolism towards propionate production, while the CFR mode with extended solids retention time enriched Geobacter. Adjusting operational modes and PAC addition can modulate anaerobic ethanol metabolism and enrich Geobacter.

WATER RESEARCH (2024)

Article Engineering, Environmental

Unraveling the factors influencing CO2 emissions from hydroelectric reservoirs in karst and non-karst regions: A comparative analysis

Wanfa Wang, Si-Liang Li, Jun Zhong, Yuanbi Yi, Fujun Yue, Zenglei Han, Qixin Wu, Ding He, Cong-Qiang Liu

Summary: This study compares the carbon biogeochemical processes in karst and non-karst regions within large thermal stratified river-reservoir systems. The results demonstrate that karst reservoirs have a reduced potential for carbon emissions and highlight the importance of considering geologic settings to improve accuracy in regional and global CO2 emission estimates.

WATER RESEARCH (2024)

Article Engineering, Environmental

Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River

Chunxia Jiang, Zelong Zhao, Dong Zhu, Xiong Pan, Yuyi Yang

Summary: This study analyzed the occurrence and distribution of antibiotic resistance genes (ARGs) in different environmental media of the Yangtze River using metagenomics. Core resistome dominated by multidrug resistance genes was found in all samples, while rare resistome dominated by various resistance genes was more prevalent in plasmids. Specific bacteria were identified as hosts for both core and rare resistomes, with high clinical concern ARGs found in the rare resistome. Particle-associated environment provided the most ideal conditions for resistome hosts. This study provided insights into the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments.

WATER RESEARCH (2024)

Article Engineering, Environmental

Uncovering interactions among ternary electron donors of organic carbon source, thiosulfate and Fe0 in mixotrophic advanced denitrification: Proof of concept from simulated to authentic secondary effluent

Yu Zhang, Yongtao He, Linchun Jia, Lei Xu, Zheng Wang, Yueling He, Ling Xiong, Xumeng Lin, Hong Chen, Gang Xue

Summary: By synergizing organic carbon source, thiosulfate, and zero-valent iron, efficient mixotrophic denitrification of oligotrophic secondary effluent can be achieved. Thiosulfate plays a vital role in promoting TN removal efficiency, while corrosion of Fe0 releases OH- to neutralize H+ from thiosulfate-driven denitrification, creating a suitable environment for denitrification. The coordination of thiosulfate and Fe0 maintains the dominance of Thiobacillus for denitrification.

WATER RESEARCH (2024)