4.8 Article

Engineered Platelet-Based Micro/Nanomotors for Cancer Therapy

期刊

SMALL
卷 17, 期 52, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202104912

关键词

cancer therapy; drug delivery; micromotors; microparticles; platelet-derived platelets

资金

  1. Social Development Project of Jiangsu Natural Science Foundation [BE2019744]
  2. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
  3. Qinglan Project Foundation of Colleges and Universities of Jiangsu Province
  4. Priority Academic Program Development of Jiangsu Higher Education Institution
  5. National Natural Science Foundation of China [22175096]

向作者/读者索取更多资源

This study successfully constructed engineered platelet micromotors that can achieve specific targeting and deep penetration at tumor sites, providing a new approach for research on engineered cells in disease treatment.
Engineered platelets (PLT) can bring new possibilities for diseases treatment due to the specific response for a variety of physiological disease environments. However, the deep penetration of engineered PLT in diseased tissues such as tumor is still an important challenge that restricts the therapeutic effect. Herein, the engineered PLT micromotor (PLT@PDA-DOX) is constructed by a universal self-polymerization modification method of dopamine, and the chemotherapeutic drug doxorubicin (DOX) is loaded by both pi-pi stacking interaction with polydopamine (PDA) and cellular endocytosis of PLT. The experimental results prove that PLT@PDA-DOX can target to tumor site by the specific binding of PLT with cancer cells, and then the secondary PLT-derived microparticles (PMP@PDA-DOX) are released with the activation of PLT@PDA-DOX by tumor microenvironment (TME). Besides, benefiting from the photothermal conversion capability of PDA, PLT@PDA-DOX micromotors and PMP@PDA-DOX nanomotors are driven by near-infrared light to realize deep penetration. And the PLT-based micro/nanomotors with propulsion capability possess good performance for tumor ablating in vitro and in vivo. In consideration of the operability, mildness, universality of this modification method and the good biocompatibility of PDA, this work may provide a general paradigm for the construction of engineered cells in disease treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据