4.7 Article

Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 353, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2021.131160

关键词

COVID-19; SARS-CoV-2 spike protein; Molecularly imprinted polymer; Covalent imprinting; Electrochemical sensor; antigen test

资金

  1. Estonian Research Council (Estonia) [COVSG34, PRG307]

向作者/读者索取更多资源

The study presents an electrochemical sensor based on a molecularly imprinted polymer receptor for quantitatively detecting the S1 subunit of the spike protein of SARS-CoV-2. It has a quick response time and low detection limit, showing promise as a point-of-care testing platform for early diagnosis of COVID-19.
The continued spread of the coronavirus disease and prevalence of the global pandemic is exacerbated by the increase in the number of asymptomatic individuals who unknowingly spread the SARS-CoV-2 virus. Although remarkable progress is being achieved at curtailing further rampage of the disease, there is still the demand for simple and rapid diagnostic tools for early detection of the COVID-19 infection and the following isolation. We report the fabrication of an electrochemical sensor based on a molecularly imprinted polymer synthetic receptor for the quantitative detection of SARS-CoV-2 spike protein subunit S1 (ncovS1), by harnessing the covalent interaction between 1,2-diols of the highly glycosylated protein and the boronic acid group of 3-aminophenyl-boronic acid (APBA). The sensor displays a satisfactory performance with a reaction time of 15 min and is capable of detecting ncovS1 both in phosphate buffered saline and patient's nasopharyngeal samples with LOD values of 15 fM and 64 fM, respectively. Moreover, the sensor is compatible with portable potentiostats thus allowing on-site measurements thereby holding a great potential as a point-of-care testing platform for rapid and early diagnosis of COVID-19 patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据